

Université de Liège - Seminar

Advanced Driver Assistance Systems for increased Traffic Safety

Liège, 13.05.2011

Fréderic Christen Institut für Kraftfahrzeuge RWTH Aachen University

Agenda

- Introduction
 - Traffic Safety
 - Classification of ADAS
- Sensors for environment perception
- Examples of ADAS
 - Current automotive applications
 - Current off-road applications
 - Future automotive applications

Traffic Safety

Terminology

#110300 · 11ch0022.pptx Slide No. 3 May 13, 2011 © ika 2011 · All rights reserved

Traffic Safety

Accident Statistic vs. Target of European Commission

#110300 · 11ch0022.pptx Slide No. 4 May 13, 2011 © ika 2011 · All rights reserved

Traffic Safety

Accident Statistic vs. Target of European Commission

Traffic Safety

Accident Statistic vs. Target of European Commission

#110300 · 11ch0022.pptx Slide No. 6 May 13, 2011 © ika 2011 · All rights reserved

Traffic Safety

Accident Statistic vs. Target of European Commission

Verkehrstote Anzahl der getöteten Personen Anzahl von Todesfälle je 1 Mio Einwohner

■ 2008 🗙 Keine Daten

INSTITUT FUR KRAFT-FAHR-ZEUGE RWTHAACHEN

Traffic Safety

Basics for the Deduction of Measures

- Accident research and analysis
 - When, where, why and under which circumstances do accidents happen?
 - Type, severity, frequency, reconstruction, ... of accidents

- Biomechanics
 - How do these accidents affect the human body?
 - Type, severity, frequency, ... of injuries

Deduction of measures

- Active Safety
 - Reduce the number of accidents

- Passive Safety
 - Minimise the effects of accidents

#110300 · 11ch0022.pptx Slide No. 8 May 13, 2011 © ika 2011 · All rights reserved

Sensors Examples

INSTITUT FUR KRAFT-FAHR-ZEUGE RWTHAACHEN UNIVERSITY

Traffic Safety

Accident Research and Analysis

Accident reasons

Introduction

#110300 · 11ch0022.pptx Slide No. 9 May 13, 2011 © ika 2011 · All rights reserved

Introduction Sensors

Traffic Safety

Accident Research and Analysis

Distribution of 3966 technical defects in 2009 (Germany)

Examples

Source: Federal Statistical Office, Series 8, Volume 7, 2009

#110300 · 11ch0022.pptx Slide No. 10 May 13, 2011 © ika 2011 · All rights reserved

Traffic Safety Deduction of Measures

Passive safety in former times

#110300 · 11ch0022.pptx Slide No. 11 May 13, 2011 © ika 2011 · All rights reserved

Passive Safety Protection of Passengers in the Past and Today

aggressive form of steering wheel

square-edged instrument panel

displacement of steering wheel

floor room intrusion

telescopic steering column

front airbag

#110300 · 11ch0022.pptx Slide No. 12 May 13, 2011 © ika 2011 · All rights reserved

Traffic Safety

Deduction of Measures ⇒ **Accident Risk Reduction**

Vehicle

- Vehicle design (chassis concept, quality of safety relevant parts, etc.)
- Vehicle concept (control panel, climatisation, lighting, viewing angle, seat position)

Driver

- Driver condition (stress, exhaustion, driver attention etc.)
- Driver behaviour (choice of speed for cornering, choice of distance for following, etc.)

Infrastructure / environment

- Road conditions
- Road lighting
- Crossroad concept
- Signing (speed limit/ ban on overtaking)

Legislation

- Speed controls
- Minimum distance between two vehicles

Traffic Safety

Deduction of Measures ⇒ **Accident Risk Reduction**

#110300 · 11ch0022.pptx Slide No. 14 May 13, 2011 © ika 2011 · All rights reserved

Traffic Safety

Deduction of Measures ⇒ **Accident Risk Reduction**

Vehicle

- Vehicle design (chassis concept, quality of safety relevant parts, etc.)
- Vehicle concept (control panel, climatisation, lighting, viewing angle, seat position)

Driver

- Driver condition (stress, exhaustion, driver attention etc.)
- Driver behaviour (choice of speed for cornering, choice of distance for following, etc.)

Infrastructure / environment

- Road conditions
- Road lighting
- Crossroad concept
- Signing (speed limit/ ban on overtaking)

Legislation

- Speed limits
- Minimum distance between two vehicles

Traffic Safety

Deduction of Measures

- Human errors and possible technical solution
 - Driver has to realise (detect) the situation (viewing angle, i.e. vehicle in blind spot?) ⇒ Lane Change Assist
 - Driver has to assess the situation in the right way (risk of collision, critical situation) ⇒ Collision Warning
 - Driver has to judge the situation in the right way ("It will be close, but I will go through") ⇒ Emergency Braking
 - Driver has to react in the right way (full brake power, evasion manoeuvre)
 - Vehicle has to convert driver's reaction (sufficient high deceleration/lateral acceleration) ⇒ ABS
 - Street condition has to realize the deceleration/lateral acceleration (friction factor, unevenness) ⇒ Road Friction Tester

#110300 · 11ch0022.pptx Slide No. 16 May 13, 2011 © ika 2011 · All rights reserved

INSTITUT FUR KRAFT-FAHR-ZEUGE

Traffic Safety

... is not the only target of ADAS

Comfort

- Increase of driving comfort
- Relieve the drivers from monotone tasks

Traffic efficiency

- Improved utilisation of the road capacity
- Avoidance or faster dissolution of traffic jams

Effects on the environment

- Decrease of fuel consumption
- Decrease of emissions (e.g. CO₂, CO, NO_x, Particles)
- Reduction of traffic noise

Traffic Safety

... is not the only target of ADAS

CO₂ emission of new licensed passenger cars

#110300 · 11ch0022.pptx Slide No. 18 May 13, 2011 © ika 2011 · All rights reserved

Agenda

- Introduction
 - Traffic Safety
 - Classification of ADAS
- Sensors for environment perception
- Examples of ADAS
 - Current automotive applications
 - Current off-road applications
 - Future automotive applications

Classification of ADAS

... according to the course of traffic

#110300 · 11ch0022.pptx Slide No. 20 May 13, 2011 © ika 2011 · All rights reserved

Classification of ADAS

... according to the type of assistance

#110300 · 11ch0022.pptx Slide No. 21 May 13, 2011 © ika 2011 · All rights reserved

INSTITUT

Classification of ADAS

... according to the driving task

Driving Task

The driver decides the route inside an existing road network. During the drive the navigation engages itself to the perception of the necessary information for keeping the route and if necessary to an adjustment of the route due to changed boundary conditions.

The driver adjusts the driving manner to the road situation perceived by him and the surrounding traffic. The guidance level contains subtasks e.g. the lane-keeping, the following, the overtaking and the reaction to traffic signs. The tasks of this level can be divided into lateral and longitudinal guidance.

The driver converts the chosen driving strategy into vehicle-specific control variables, e.g. steering action, position of accelerator, brake und gear. A permanent adjustment of the actual value to the desired value of the velocity and the lane takes place. For the driver "stabilisation" means the avoidance of uncontrolled internal dynamic of the vehicle.

Time demand

Introduction

Sensors

Examples

INSTITUT FUR KRAFT-FAHR-ZEUGE

Classification of ADAS

... according to the driving task

Agenda

- Introduction
 - Traffic Safety
 - Classification of ADAS
- Sensors for environment perception
- Examples of ADAS
 - Current automotive applications
 - Current off-road applications
 - Future automotive applications

INSTITUT FUR KRAFT-FAHR-ZEUGE

Sensors for environment perception

Overview

source: Bosch

INSTITUT FUR KRAFT-

Sensors for environment perception

History of Radar Technology

Introduction

Traffic radar equipment in Dresden 1961

Display unit is integrated in vehicle

source: German Traffic 07/1961

INSTITUT FUR KRAFT-FAHR-ZEUGE RWTHAACHEN

Sensors for environment perception

Long Range Radar

RADAR = <u>Radio</u> <u>Detection</u> <u>And</u> <u>Ranging</u>

Example: Bosch 3rd generation

Performance data (compared to LRR2)

→ Field of View: 30° (16°)

→ Range: 0.5...250m (1.5 ...200m)

Object separation

By distance: 1m (2m)

By velocity: **0.6m/s** (1.2 m/s)

By angle: ~4° (none)

Technology:

77 GHz Silicon Germanium MMIC (world's first)

- Flexray communication (world's first)
- → Package advantages (world's smallest)
- Lead free

INSTITUT FUR KRAFT-

Sensors for environment perception Lidar

- LIDAR = <u>Light Detection And Ranging</u>
- Example: Omron and Hella

Introduction

INSTITUT FÜR KRAFTFAHRZEUGE RWTHAACHEN UNIVERSITY

Sensors for environment perception

Laser Scanner

- LASER = <u>Light Amplification</u> by <u>Stimulated Emission of <u>Radiation</u>
 </u>
- Example: Ibeo Lux

Introduction

- Scanning Frequency: 12,5 Hz (25 Hz)
- Horizontal angle: 100 ° field of view
- Range: 0,3 m to 200 m
- Resolution: range 4 cm, angle 0.125 ° to 1 °
- 4 parallel and simultaneous scanning layers
- Size: H85 x W128 x D93
- Weight: Approx. 1kg
- Built-in processing
- Laser class 1
- Ethernet- and CAN-Interface

INSTITUT FÜR KRAFTFAHRZEUGE RWTHAACHEN IJNIVERSITY

Sensors for environment perception

Comparison of radar with laser sensors

<u>Advantages</u>

Radar

- not sensitive to dirt
- direct velocity measurement
- hidden installation possible
- no interferences with other sensors
- low output power
- small antenna because of combined emitting and receiving

<u>Disadvantages</u>

- expensive
- no visibility measurement
- blind flight possible at bad sight

Laser

- low price
- point of view adaptation
- no interferences with other sensors
- no health impairment

- sensitive to dirt
- installation influences styling
- indirect velocity measurement
- sensitive to bad weather condition

INSTITUT FUR KRAFTFAHRZEUGE RWTHAACHEN UNIVERSITY

Sensors for environment perception

Systems for image processing

- CMOS camera (Complementary Metal Oxide Semiconductor)
- CCD camera (Charge Coupled Device)
- Example Mobileye:

Introduction

- Resolution: 480×640 pixels
- Field of View: 47 °

INSTITUT FÜR KRAFT-FAHR-ZEUGE RWTHAACHEN LINIVERSITY

Sensors for environment perception Ultrasonic

Used in park distance control systems

Parameter	Value
Range	0.2 – 1.5 m
Position Accuracy	0.02 m
Relative Velocity	-5 m/s – +5 m/s
Velocity Resolution	0.5 m/s
Object Detection Time	100 ms

Sources: DENSO, Bosch

Sensors

Sensors for environment perception

Comparison of different sensor systems

Introduction

	Radar	Lidar	Laser scanner	Ultrasonic	Image processing
Range	++ (77 GHz) + (24 GHz)	++	+		+
Accuracy long. distance	o (77 GHz) + (24 GHz)				-
Lateral resolution			0		+
Multiple targets		0			++
Measurement process	Reflexion	Reflexion	Reflexion	Reflexion	Triangulation
Measurement at bad weather or dirty sensor		0	o	O	-
Hidden mounting	Yes	No	No	No	No

#110300 · 11ch0022.pptx Slide No. 33 May 13, 2011 © ika 2011 · All rights reserved

INSTITUT FUR KRAFT-FAHR-ZEUGE RWTHAACHEN

Sensors for environment perception

Vehicle-to-vehicle/infrastructure communication

- Communication technology:
 - Wireless LAN IEEE 802.11.p
 - GSM, GPRS, UMTS UTRA TDD
 - HiperLAN

Introduction

- CALM
- Bluetooth
- Self-contained solutions based on 434 MHz, 868 MHz, 2.4 GHz, 5.8 GHz, 24 GHz
- Abbreviations:
 - V2V (C2C)
 - V2I (C2I)
 - V2X (C2X)

Introduction

INSTITUT FÜR KRAFT-FÄHR-ZEUGE RWITHAACHEN LINIVERSITY

Sensors for environment perception

Global Navigation Satellite Systems

- Examples: GPS, Galileo, Glonass
 - Position Accuracy: 10 m
- Enhanced Position Accuracy:
 - DGPS: up to 0.3 2.5 m
 - RTK-GPS: up to 2 cm

INSTITUT

Sensors for environment perception **Digital Map & Map Matching**

Introduction

- Improve the accuracy of satellite navigation and "Dead Reckoning"
- Positioning system gives coordinates, which do not correspond exactly to those of a street on the map
- Itinerary is compared to the course of the road on the digital map
- Map Matching algorithm corrects the position
- Pseudo positioning system, because it determines the position through the coordinates of knots (junctions) or points (beginning or end of curve)

Sensors

Sensors for environment perception

How does the world look like for sensor technology?

Distance sensors

Introduction

#110300 · 11ch0022.pptx Slide No. 37 May 13, 2011 © ika 2011 · All rights reserved

INSTITUT

Sensors for environment perception

Introduction

How does the world look like for sensor technology?

Distance sensors + image processing "1G"

Slide No. 38 #110300 · 11ch0022.pptx May 13, 2011 © ika 2011 · All rights reserved

INSTITUT FUR KRAFT-FAHR-ZEUGE RWTHAACHEN UNIVERSITY

Sensors for environment perception

How does the world look like for sensor technology?

Distance sensors + image processing "2G"

#110300 · 11ch0022.pptx Slide No. 39 May 13, 2011 © ika 2011 · All rights reserved

Introduction

INSTITUT FUR KRAFT-FAHR-ZEUGE RWTHAACHEN UNIVERSITY

Sensors for environment perception

How does the world look like for sensor technology?

Distance sensors + image processing "2G" + C2C

#110300 · 11ch0022.pptx Slide No. 40 May 13, 2011 © ika 2011 · All rights reserved

INSTITUT FUR KRAFT-FAHR-ZEUGE RWTHAACHEN UNIVERSITY

Sensors for environment perception

How does the world look like for sensor technology?

Distance sensors + image processing "2G" + C2C + digital map

#110300 · 11ch0022.pptx Slide No. 41 May 13, 2011 © ika 2011 · All rights reserved

Agenda

- Introduction
 - Traffic Safety
 - Classification of ADAS
- Sensors for environment perception
- Examples of ADAS
 - Current automotive applications
 - Current off-road applications
 - Future automotive applications

INSTITUT FUR KRAFT-

Current automotive applications

First developments in the 1950th's

Introduction

the first field test of a radar-based distance measurement in the 50th's

INSTITUT FUR KRAFT-FAHR-ZEUGE

Current automotive applications First C2C

Introduction

Source: ADASE 2 AIDER CARTALK WORKSHOP

#110300 · 11ch0022.pptx Slide No. 44 May 13, 2011 ©ika 2011 · All rights reserved

Current automotive applications

Automatic tunnel drive

INSTITUT FUR KRAFT-FAHR-ZEUGE

Current automotive applications

First lateral guidance system

#110300 · 11ch0022.pptx Slide No. 46 May 13, 2011 © ika 2011 · All rights reserved

INSTITUT FUR KRAFT-FAHR-ZEUGE

Current automotive applications

Example: BMW 7 series

Introduction

- BMW Night Vision
- Adaptive curve light
- Front light assistant
- ACC S&G
- Head-Up Display
- Lane Departure Warning
- Speed-Limit Display
- Lane Change Warning
- Side View, Rear View Camera
- Park Distance Control (PDC)
- BMW Assist
- Dynamische Stabilitäts Control (DSC), Brake assistant
- Rain sensor including drive light and wiper control
- Adaptive Brake light
- Active steering

Source: BMW

INSTITUT FÜR KRAFTFAHRZEUGE RWTHAACHEN UNIVERSITY

Current automotive applications

Night Vision - Far Infrared Radiation (FIR)

- Passiv Night Vision System
- Infrarotsensitive camera in vehiclefront
- Thermal radiation (7-12 µm) of objects are detected
- Warm objects are indicated as black-white picture
- Especially pedestrians and bikers are detected in cold environment
- Range up to 300 m
- No additional receptor/ transmitter required

Quelle: BMW

INSTITUT FUR KRAFTFAHRZEUGE RWTHAACHEN

Current automotive applications

Night Vision - Near Infrared Radiation (NIR)

- Active Night Vision System
- Infrarotradiator in vehiclefront, acceptor camera can be integrated in vehiclefront in any order
- Wavelength in the range of 780-1000 nm (near infrared radiation)
- Infrarotradiation is reflected on objects
- Important objects (road markings, traffic signs etc.) are dedicated definitly
- Further applications are possible (pedestrian detection)
- IR-emitter is halogen bulb with optical filter (future: IR-LDEs)

Camera picture only with Xenon Light

Camera picture with additional IR Radiator

source: VDI Electronic Systems for Vehicles

INSTITUT FÜR KRAFT-FAHR-ZEUGE

Current automotive applications

Night Vision 2

Introduction

- Based on FIR Technology with additional detection of pedestrian and bikers
- Objects are classificated
- Driver is warned in case of positiv detection
- Detectionfield depends on vehicle velocity

Quelle: BMW, Autoliv, ATZ

#110300 · 11ch0022.pptx Slide No. 50 May 13, 2011 © ika 2011 · All rights reserved

Current automotive applications

Adaptive light (Variable light dissipation at intersections)

standard

new

Source: Hella

INSTITUT FUR KRAFT-

INSTITUT FUR KRAFT-FAHR-ZEUGE

Current automotive applications

Semi-autonomous parking

Introduction

INSTITUT FUR KRAFT-FAHR-ZEUGE RWTHAACHEN IJNIVERSITY

Current automotive applications

Adaptive Cruise Control (ACC)

- Facts and figures:
 - First use 1995 in Japan
 - Introduced in Europe 1999 in Mercedes vehicles
 - In 2002 integration of ACC systems in heavy duty vehicles
 - Radar with 76-77 GHZ or Lidar
 - Today available at over 20 vehicle manufactures

Sensors

Current automotive applications

Adaptive Cruise Control (ACC)

Introduction

#110300 · 11ch0022.pptx Slide No. 54 May 13, 2011 © ika 2011 · All rights reserved

INSTITUT FÜR KRAFTFAHRZEUGE RWTHAACHEN UNIVERSITY

Current automotive applications ACC Stop&Go

Facts and figures:

Introduction

- Introduced in Europa 2005 by Daimler in S-Class
- Other OEMs bring ACC S&G to the market (e.g. BMW 5 and 7)
- Detection of surrounding using 24 GHz Radar Sensors
- Maximum deceleration of up to 4 m/s²
- Automaic acceleration after standstill if front vehicle accelerates within 3 seconds

Quelle: Daimler

INSTITUT FUR KRAFT-FAHR-ZEUGE RWTHAACHEN

Current automotive applications

Launch of ACC systems

Introduction

	•S	SL, CL	■E, CL	K Cou	pé		•S	 			ACC
HONDA	 			CF	R-V, Le	gend	, Acco	rd	-	A(CC S&G
\mathcal{B}			1	1	 	 	I I	i i	•Sona	ta	
	I		Vel S	atis		М	legane	, Espa	ace		
NISSAN	 		Prime	ra		I I	 				
				Phaet	on	I I	i i	∙Toua	reg	Passa	t CC
്രാ	i		i	GS	, LS ı		•IS	i i	1		
LAND- -ROVER	1	Rang	e Rove	r Spor	t, Disc	overy	<i>,</i>	<u></u>	 		\
VOLVO				I I I	 		1	S 80	1	*XC 70	, V70 XC 60
JAGUAR	!		•XK8	XJ-Ty	∙S-Typ ′pe	е	!	I I	 		
	i i		i	I I	[i i	•FX, I	VI	•QX	
(LANCE)	 		1	Kappa	į		1		1		
Fire				 	Galaxy	, S-N	1ax	-	Mond	■Focus eo	
FITAT				Stilo			!		i		
CITROËN	 						 		•C5, C	6	
CHRYSLER	 							 	■300c		
	I I						STS				
	i i		■7er	I I	5er	6er	•3er	■Q7	•7er, 6	Ser, 5er	
							1	•Q7 •A8	•A4, A	5 A6	
19	998	2000	200)2	200)4	20	06	200	08	2010

#110300 · 11ch0022.pptx Slide No. 56 May 13, 2011 © ika 2011 · All rights reserved

INSTITUT FÜR KRAFT-FÄHR-ZEUGE RWTHAACHEN UNIVERSITY

Current automotive applications

From ACC to ACC Stop&Go to CMbB

#110300 · 11ch0022.pptx Slide No. 57 May 13, 2011 © ika 2011 · All rights reserved

Introduction

Sensors

Examples

INSTITUT FUR KRAFT-FAHR-ZEUGE RWITHAACHEN LIMIVERSITY

Current automotive applications

Euro NCAP Advanced Reward - Volvo City Safety

#110300 · 11ch0022.pptx Slide No. 58 May 13, 2011 © ika 2011 · All rights reserved

INSTITUT FUR KRAFT-FAHR-ZEUGE RWTHAACHEN

Current automotive applications

Euro NCAP Advanced Reward - Audi Side Assist

#110300 · 11ch0022.pptx Slide No. 59 May 13, 2011 © ika 2011 · All rights reserved

Introduction

Sensors

Examples

Current automotive applications

Euro NCAP Advanced Reward - Mercedes Pre-Safe Brake

INSTITUT FUR KRAFT-

EURO NCAP advanced

2010 Reward for Mercedes-Benz PRE-SAFE® Brake

INSTITUT FÜR KRAFT-FAHR-ZEUGE RWTHAACHEN UNIVERSITY

Current automotive applications

Euro NCAP Advanced Reward - Peugeot Connect SOS

#110300 · 11ch0022.pptx Slide No. 61 May 13, 2011 © ika 2011 · All rights reserved

Introduction

Sensors

Examples

Current automotive applications

Euro NCAP Advanced Reward - Volkswagen Lane Assist

INSTITUT FUR KRAFT-

EURO NCAP advanced

2010 Reward for Volkswagen Lane Assist

#110300 · 11ch0022.pptx Slide No. 62 May 13, 2011 © ika 2011 · All rights reserved

INSTITUT

Current automotive applications

Autonomous Driving Trucks

Introduction of autonomous driving trucks on factory premises for the transport of euro-pallets

Introduction

- Realised since March 2001
- Max. driving velocity: 5 km/h

- Sensors: Laserscanner for obstacle detection
- Rubber foam bumper as emergency-off buttons
- Distance between activation of emergency-off and complete standstill of the vehicle in wet road conditions: 0,4 m
- Truck can be driven as normal vehicles by human driver

Introduction Sensors Examples

Current automotive applications

Autonomous Driving Trucks

Agenda

- Introduction
 - Traffic Safety
 - Classification of ADAS
- Sensors for environment perception
- Examples of ADAS
 - Current automotive applications
 - Current off-road applications
 - Future automotive applications

INSTITUT FUR KRAFT-FAHR-ZEUGE RWTHAACHEN

Current off-road applications Guidance of agricultural machinery

INSTITUT FUR KRAFT-FAHR-ZEUGE RWTHAACHEN

Current off-road applications

Wheel Loader

Introduction

Agenda

- Introduction
 - Traffic Safety
 - Classification of ADAS
- Sensors for environment perception
- Examples of ADAS
 - Current automotive applications
 - Current off-road applications
 - Future automotive applications

Introduction

INSTITUT FÜR KRAFTFAHRZEUGE RWTHAACHEN LINIVERSITY

Future automotive applications Platooning

- Electronic coupling of two or more trucks
- Distance between vehicles from 5 to 15 m
- System takes over longitudinal and lateral control
- Possible lane changes performed by the system

Advantages:

- Reduction of fuel consumption up to 17%
- Reduction of occupied road space
- Relaxed driving for the coupled drivers

INSTITUT FUR KRAFT-FAHR-ZEUGE RWITHAACHEN INIVERSITY

Future automotive applications

Obstacle warning

Introduction

- On basis of vehicle-vehiclecommunication
- Warning of traffic jam end
- Construction sites
- Accident sites
- Local dangers: icy road, oil on road
- Message is delivered from vehicle to vehicle

INSTITUT FUR KRAFT-

Future automotive applications

ecoACC (predictive control)

Future automotive applications

Autonomous Lane Change Assistant

- Vehicles communicate and cooperate with each other
- Vehicle 1 asks for cooperation
- Vehicle 2 keeps lane and accelerates to generate space for vehicle 3
- Vehicle 3 brakes and tries to change lane
- Vehicle 4 is not relevant in this case and keeps on the same lane

#110300 · 11ch0022.pptx Slide No. 72 May 13, 2011 © ika 2011 · All rights reserved

INSTITUT FUR KRAFTFAHRZEUGE RWTHAACHEN

Future automotive applications

Intersection assistant

Introduction

- On basis of vehicle-vehiclecommunication
 - Disadvantages: no early pedestrian detection
- Realisable through image processing or laser scanner
 - Disadvantage: no detection of hidden vehicles
- ⇒ Combination of systems ideal

Future automotive applications

Introduction

Intersection assistant ... can't always help

Sensors Examples

Introduction Sensors

INSTITUT FUR KRAFT-FAHR-ZEUGE RWITHAACHEN

Future automotive applications

"Vision Zero": Accident free road traffic

#110300 · 11ch0022.pptx Slide No. 75 May 13, 2011 © ika 2011 · All rights reserved

Future automotive applications

Burden: Legal aspects

Introduction

The development of ADAS has to consider the Wiener Convention from 1968:

ARTICLE 13

Speed and distance between vehicles

1. Every driver of a vehicle shall in all circumstances have his vehicle under control so as to be able to exercise due and proper care and to be at all times in a position to perform all manoeuvres required of him. He shall, when adjusting the speed of his vehicle, pay constant regard to the circumstances, in particular the lie of the land, the state of the road, the condition and load of his vehicle, the weather conditions and the density of traffic, so as to be able to stop his vehicle within his range of forward vision and short of any foreseeable obstruction. He shall slow down and if necessary stop whenever circumstances so require, and particularly when visibility is not good.

#110300 · 11ch0022.pptx Slide No. 76 May 13, 2011 © ika 2011 · All rights reserved

Fréderic Christen

Institut für Kraftfahrzeuge RWTH Aachen University Steinbachstr. 7 52074 Aachen Germany

Phone +49 241 88 61104

Fax +49 241 80 22147

Mobile +49 178 46 07694

Email christen@ika.rwth-aachen.de

Internet www.ika.rwth-aachen.de