
Distributed Load Balancing for 
Iterative-Stencil Applications

Gérard Dethier, P. Marchot and
P.A. de Marneffe

1. Problem Description
Task Graph (Iterative-

Stencil Application)
Machine Graph 

(cluster)

Mapping

Weighted Edges

● Weighted Vertices
● « Active » machine 

sub-graph unknown 
in advance.

4 4

88

8

4

2. Algorithm
2.1. Tree Self Organization

2.2. Initial Data Distribution

2.3. Load Balancing

2.4. Partitions Refinement

2 2

2 4

2

Computational Load 
is optimized

The Task 
Graph is on 

the root 
machine.

It is then divided 
following the 

tree arcs.

The Task Graph is 
homogeneously 

distributed among 
all machines

Task Graph nodes
Flow

Inter-partitions 
communications are 
minimized. 
Neighboring 
machines exchange 
nodes to refine their 
partitions.

3. Results
3.1 Performance

3.2 Partition Quality
4. Conclusion

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

Load Balancing 
Time

Number of Machines

T
im

e
 (

s)

The load balancing time remains roughly constant while the 
number of machines increases.
The time variations are caused by different tree layouts
of the machines.

● 2 cluster configurations are used
● C1 = 25 x 2Ghz + 25 x 3Ghz
● C2 = 25 x 1Ghz + 25 x 3Ghz

● Quality is estimated by comparing the execution time of a 
specific Iterative-Stencil Application with and without load 
balancing.

● The execution times given here are obtained using 
simulations.

Cluster

C1

C2

Without Load 
Balancing

With Load 
Balancing

Gain

200,22

217,54 117,71

96,375 52%

46%

Execution time (s)

● A distributed method to balance load 
among an heterogeneous cluster 
has been presented.

● Load balancing time is bounded for
the number of tested machines. 
Tests with more machines could 
prove the scalability of the method.

● The gain in execution time obtained 
with load balancing is good ; the 
overhead in execution time caused 
by load balancing leads to a total 
execution time well under the 
execution time without load 
balancing.


	Page 1

