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Abstract. Threshold for Faraday instability has been experimentally measured for slightly viscous liquids.
Changing the size of the container containing the fluid allows us to emphasize the role played by the
capillary meniscus on the onset for instability. As the container is getting smaller, an upset of the critical
acceleration is observed. Below a given container diameter, eigenmodes are observed along the stability
curve. A dissipation term is proposed for considering the viscous dissipation against the walls of the
container.

1 Introduction

Hydrodynamic instabilities have been widely investigated
for many decades. Theoretical, experimental and numeri-
cal works have been performed in the aim of understand-
ing the physical mechanisms responsible for the appear-
ance of pattern and their transition to a disordered state.
Among others, the case of the Faraday instability [1] re-
ceived a special attention. This instability occurs when
a liquid bath is vertically oscillated above a critical ac-
celeration Γc. For acceleration values in the vicinity of Γc,
the fluid/air interface is covered by a set of standing waves
which can be ordered into different geometries like squares,
concentric circles, triangles, spirals, etc. [1–6]. Above this
linear regime, the patterns become unstable and chaos
may appear [7]. Increasing higher again the driving accel-
eration causes the breaking of the waves and drop ejection
may be observed [8].

Most of the papers on Faraday instability assume
that either the liquid bath is spatially infinite or that the
liquid surface is normal to the walls of the container at
the triple line. In most of the experimental situations,
this assumption is naturally not respected and different
results are expected [5]. The particular case of miscible
fluids has to be pointed out [9]. One of the effects of
this non-normal connection is the generation of surface
waves close to the side walls and, subsequently, an energy
dissipation in the case of viscous fluids. As the system
is shaken for producing Faraday waves, the apparent
gravity varies, leading to an oscillatory dynamics of the
meniscus length. In order to ensure mass conservation,
surface waves are generated at the driving frequency.
The dynamics of the meniscus in this oscillating regime
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is quite complex [10–12]. Moreover, such emitted surface
waves interfere with the sub-harmonic Faraday patterns
and their onset for appearance.

The present paper addresses this problem of Faraday
waves generated at an interface having a non-normal con-
nection angle with the walls of the container. The follow-
ing experimental study concerns a viscous fluid inside a
finite container. Attention is paid to viscous dissipation at
the container walls, as a parameter influencing the onset
for instability. Due to the emission of surface waves from
the meniscus, an upshift of the threshold for instability is
expected, which should depend on the contact angle.

2 Theoretical background

As the fluid bath is submitted to vertical oscillations, the
free surface experiences deformations and surface waves
appear. The latter can be described in terms of the vertical
elevation of the free surface z = ζ(x, y, t). Considering that
the wave amplitude is small compared to its wavelength,
and that standing waves appear, the free surface elevation
can be rewritten in terms of eigenmodes Sm(x, y), such
that

ζ(x, y, t) =
∑

m

ζm(t)Sm(x, y). (1)

Each of these modes can be modeled as a harmonic oscil-
lator governed by

ζ̈ = −ω2

mζm, (2)

where ωm is the natural frequency of the oscillator cor-
responding to the eigenmode m. This natural frequency
obeys ωm = Ω(km), with each of the Ω(k) given by the
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following dispersion relation:

Ω(k) =

[(

g0k +
σ

ρ
k3

)

tanh(kh)

]1/2

, (3)

where k is the wave number corresponding to the mode
m, g0 is the gravitational acceleration and σ is the surface
tension of the liquid. The external excitation imposed to
the system can be seen as a temporal modulation of g0,
such that the liquid experiences

g(t) = g0 − Γ cos(ωt), (4)

where Γ = Aω2, with A being the amplitude of oscilla-
tions and ω their frequency. It has been shown [13] that
including this modulation into a linearization of the Eu-
ler equations still leads to eigenmodes, but parametrically
excited. The free surface is now given by

ζ̈ = −
[

ω2

m − (km tanh(kmh))a cos(ωt)
]

ζm, (5)

where ωm still obeys ωm = Ω(km). Faraday waves are
therefore parametrically excited surface waves. Gravita-
tional waves are generated when g0k is larger than σk3/ρ.
Otherwise, they are called capillary waves. As we will see
further, all the measurements presented in the present pa-
per are obtained close to the Γc threshold, within the cap-
illary wave regime.

If the instablity is generated in a slightly viscous liquid,
then, some mechanical energy is dissipated. As proposed
in [14], this energy dissipation can be taken into account
by adding a damping term to the previous linear theory.
The damping coeficient γν can be estimated by solving the
ratio between the total mechanical energy of the system
and the rate of energy dissipation,

γν =
|〈Ė〉|
2〈E〉

, (6)

where the 〈. . . 〉 symbols stand for time averaging [14].
These energies read

E = ρ

∫

v2 dV ∼ ρv2(R2k−1) (7)

and

Ė = −2ρν

∫

(∇ · v)2 dV ∼ ρν(v/k−1)2(R2k−1), (8)

for a fluid of density ρ in a container of typical diameter
2R = d moving at a characteristic velocity v such that a
wave number k is excited. Eventually, one gets

γν ∼ νk2. (9)

The inclusion of such a term has been addressed in various
papers, among which [2, 15–17]. One of the advantages of
this phenomenological approach is to preserve the non-
coupling of the eigenmodes.

Fig. 1. Top view of the experimental container. Faraday insta-
bility is measured within the central circle having a diameter d.

Usually, such classical linear theories do not consider
any geometrical confinement of the fluid, e.g. [17, 18].
When considering the finite size of the vessel, one has
to suppose that the contact line between the fluid and
the walls defines an angle θ. The ideal situation is met
for θ = π/2 when capillary effects at the walls can be
neglected. For any other value of θ, the surface tension
is responsible for the apearance of a capillary meniscus,
whose spatial extension depends on g(t). The interaction
between Faraday waves and this time evolving meniscus
is the main feature of the present paper.

3 Experimental set-up

The experimental set-up for producing Faraday instabil-
ity is composed of an electromagnetic shaker receiving an
oscillating voltage owing a given frequency f . The ampli-
tude A of oscillations is accurately measured by means of
a piezoelectric accelerometer fixed onto the vibrating table
and giving the driving acceleration value Γ = Aω2, where
ω = 2πf . The fluid is a 10 cSt silicon oil (ρ = 0.934 kg/m3,
σ = 0.0201 N/m) and is contained into a cylindrical ves-
sel (diameter D = 20 cm, height h = 3 cm) made out of
pyrex. At the center of this vessel, a cylinder of diameter
d made of aluminum is fixed and is considered as the ex-
perimental cell (see fig. 1). Changing the diameter of the
experimental cell is thus fast and easy. A small hole (1 mm
in diameter) has been drilled at the bottom of this small
cylinder in order to allow the fluid to reach the same level
in both containers. Since the fluid is viscous and the os-
cillations are of typically a few Hz, no fluid motion takes
place into this hole. Moreover, the fluid level (∼ 2.5 cm)
is large enough to ensure that the bottom plate can be
assumed to have no effect on the surface instability on-
set (kh ∼ 1). We have also verified that the contact line
was not moving during the experiments, ensuring that no
hysteresis of the contact angle has to be accounted for.

The threshold of the instability has been measured by
increasing the driving acceleration in steps at a constant
frequency value. A stroboscopic LED light was connected
to the signal generator for helping in determining when
the sub-harmonic regime is reached.
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Fig. 2. Normalized critical acceleration Γc/g0 for Faraday in-
stability as a function of the forcing frequency f . Experimental
data corresponding to different container diameters are pre-
sented, as black symbols. Dashed and solid lines are numerical
modeling including damping coefficients of eqs. (9) and (12).

4 Onset for instability

The onset for instability has been measured for differ-
ent container diameter values within the range 9 ≤ d ≤
93 mm. Data points corresponding to four d values are
presented in fig. 2. It can be seen that, as the diameter d
decreases, an upshift of the threshold is observed. In the
case of the smaller container, lobes are observed and cor-
respond to the resonance of the free surface. These modes
have been identified and are the same as those expected for
an inviscid fluid. Due to surface tension, they are however
decorated with a non-normal connection at the side walls,
as predicted in [19]. It should be noted that the transition
between successive modes is smooth. This is somewhat
surprising since the capillary meniscus sometimes extends
to more than half the cylinder surface.

Decreasing the size of the vessel results in a growing
relative effect of the capillary meniscus at the walls. Due
to the external forcing, the characteristic height of this
meniscus is evolving as ℓ =

√

σ/ρg(t) [19]. In order to
ensure mass conservation, this modification of the menis-
cus volume leads to the emission of capillary waves, at
the forcing frequency f . Viscosity is responsible for the
damping of these waves. Recalling eq. (9) for the damp-
ing coefficient due to viscosity, one sees that the waves
travel a typical distance vγν

−1 at a characteristic velocity
v = ω/2k, during a time γν

−1. The length of the menis-
cus is thus of the order of l ∼ ω/νk3 which reads, in the
capillary wave regime, l ∼ σ/4ρνω.

As previously for the viscosity, we will suppose that
a phenomenological term can be added to the linear the-
ory for modeling this capillary effect due to the geomet-
rical confinement. In agreement to the non-slip condition
at side walls of the vessel, we assume that the vertical
component of the velocity experiences a gradient within
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Fig. 3. Wave amplitude as a function of time for Faraday waves
in water. The natural mode m = 2 (eq. (1)) is excited (t ≤ 0)
and then left at rest. The damping of the free surface waves is
observed for t ≥ 0. The dashed sinusoidal curve oscillates at
the free wave regime frequency observed for t ≥ 0 and slightly
differs from the forcing frequency.

a boundary layer having a thickness δ =
√

νω−1. The en-
ergy loss can be modeled by the mechanical balance energy
eq. (6), giving

E ∼ ρv2(R2k−1) (10)

and
Ė ∼ ρν(v2/δ2)(Rk−1δ). (11)

The damping coefficient, γσ corresponding to the energy
dissipation at the wall is thus given by

γσ = ω
δ

R
. (12)

The solid curve of fig. 2 presents theoretical predictions
based on the linear theory including the γν damping co-
efficient, while the dashed lines correspond to this theory,
including the energy dissipation in the vicinity of the con-
tainer by means of γσ. These theoretical predictions are
superimposed to experimental results. It should be noted
that the order of magnitude estimate of γσ, as written
in eq. (12), has been multiplied by an empirical numeri-
cal pre-factor 1.25, allowing a quantitative agreement be-
tween experiments and theory. For the smallest container
(d = 9 mm), a larger deviation from experimental data
is however observed. The strong coupling between Fara-
day waves and the waves generated by the meniscus, at
the forcing frequency, could be considered as the source of
this dissension. In such a small container, capillary waves
nearly extend all over the free surface.

In order to validate the introduction of the γσ coeffi-
cient in the linear theory, we performed damping measure-
ments of the Faraday waves. The free surface was oscil-
lated in such a way that one of the first symmetric modes
was excited, namely m = 2. Working with small mode
numbers allows for large k numbers and large wave am-
plitudes. Figure 3 presents a typical run for a container
filled with water. The wave amplitude A(t) is plotted as
a function of time. This figure was obtained by imaging
an illuminated sheet of the free surface with a high-speed
video camera at a frame rate of 2000 frames per second.
The video camera was then tilted in order to record, from
above, the shape of the light sheet on the deformed free
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surface. The oscillations are stopped at the time t = 0 s.
The asymmetry in the wave amplitude is due to the non-
linearity of the waves which are higher than deep, with
respect to the reference position [20]. After the forcing os-
cillations are stopped, the free surface waves regime com-
mences. The wave frequency is changing due to this new
regime and the wave amplitude is damped. The difference
between the forcing frequency and the free one can be seen
in fig. 3 where the non-damped free surface wave oscilla-
tion (dashed line) is superimposed to the forcing signal
for t ≤ 0. Fitting a modulating exponential decay on the
curves for t ≥ 0 gives the damping coefficient γσ. In fig. 3,
the obtained value is γσ = 3.52 ± 0.06 s−1. Recalling the
order of magnitude estimate for the bulk viscous dissipa-
tion, γν ∼ νk2 ∼ 0.01 s−1, one sees that the wall contri-
bution is quite large. Now recalling eq. (12), one obtains
γσ ∼ ωδ/R ∼ 1 s−1. This estimate gives the good order of
magnitude for the damping coefficient.

Based on this γσ value, we can theoretically esti-
mate [6] the critical acceleration to Γc = 0.489g0. Experi-
mentally, we measured Γc = 0.49 ± 0.005g0, in very good
agreement with the prediction. For all the experiments
we performed, a quantitative agreement has been noticed
between experimental results and theoretical predictions
including the measured damping coefficients.

This result justifies the use of a damping term within
a linear theory in order to model the viscous dissipation
due to meniscus waves.

5 Contact angle

As it is emphasized above, the viscous dissipation in the
boundary layer plays an important role in the destabiliza-
tion threshold of the free surface. It is usually assumed
(theoretically) or forced (experimentally) that the triple
line is pinned in such a way that the connection of the fluid
on the container is normal. When this brimfull condition
in not met, the capillary meniscus is expected to change
the spatial extension δ of the velocity gradient. The latter
should indeed be larger. In order to check this assumption,
we have measured the threshold for Faraday instability for
different configurations of the meniscus. We started from
a situation where the meniscus if fully developed and the
triple line is touching the top of the container. We have
then increased the amount of liquid inside the container,
still forcing the contact line to be pinned. This progressive
filling resulted in a continuous variation of the spatial ex-
tension of the capillary meniscus, passing by the normal
connection configuration (brimful condition).

Due to the circular geometry of our set-up, it is rather
difficult to measure the contact angle. We thus solved the
Laplace equations for the meniscus [14] in order to deduce
the contact angle. We imposed the horizontality of the
free surface at the center of container, knowing that the
height of the free surface is given by the amount of liquid
added into the container. In fig. 4, the normalized critical
acceleration Γc/g0 is plotted as a function of the amount
of added liquid ΔV . The corresponding contact angles are
given in the top part of this figure. It should be noted that
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Fig. 4. Top: apparent contact angle at the meniscus as a func-
tion of the added volume ∆V inside a vessel of diameter 45 mm.
Bottom: threshold for Faraday instability (f = 50 Hz) as a
function of ∆V . Three regions can be distinguished (see text
for further details).

we also explored the effect of removing some liquid (noted
as ΔV ≤ 0).

For small liquid contents (i.e. ΔV ≤ 0, region (i) of
fig. 4), the threshold is constant. As we remove the liquid
from the container, the contact angle is still very small
(silicon oil in contact with glass) and does not vary, allow-
ing a full development of the capillary meniscus. For all
the values of ΔV ≤ 0 we tested, the depth of the liquid
enters the infinite depth approximation, explaining this
result.

As we pour liquid, 0.1 ml by 0.1 ml, the contact line re-
mains pinned on the container border (region (ii) of fig. 4).
Increasing further the amount of liquid leads to an in-
crease in the contact angle. It is observed that the critical
acceleration Γc reaches its minimal value when the free
surface is horizontal, i.e. when the contact angle is π/2.
This minimum occurs for ΔV ≈ 3.5 ml. Knowing the ex-
act geometry of the vessel and considering the pinning
of the contact line, the expected value is ΔV ≈ 3.47 ml.
The measured value for Γc is very close to the expected
value for a viscous infinite fluid, emphasizing the relevance
of this simple technique for varying the apparent contact
angle and the subsequent meniscus wave extension.

Adding more liquid into the container leads to an in-
crease in the threshold for instability (region (iii) of fig. 4).
For these measurements, an overflow was observed, very
small at the beginning but significant for large ΔV values.
At the container walls, the critical acceleration is thus go-
ing out of the infinite depth approximation and the Fara-
day waves are damped. The resulting increase in Γc was
previously observed and reported in [21].

6 Conclusions

Both the size d of the container and the contact angle θ
modify the critical acceleration Γc. With respect to the in-
finite bath configuration, a larger value of Γc is measured
as soon as d takes a finite value. Any deviation of θ from
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the normal wetting condition (e.g. θ = π/2) also results
in a larger value of the critical acceleration. Those obser-
vations reveal that an increase of energy is required for
inducing Faraday waves on a free surface where meniscus
capillary waves generation is allowed. While the meniscus
waves are harmonically generated, the Faraday ones are
sub-harmonic. The interaction between these two kinds
of waves thus has a stabilizing effect on the free surface.
While decreasing d increases the relative spatial extension
of the meniscus waves, modifying θ tunes the characteris-
tic length of the capillary meniscus.

7 Summary

We have generated Faraday instability at air/liquid in-
terfaces with different boundary conditions. The experi-
mental results evidence the role played by the capillary
meniscus on the threshold for instability. Depending on
the spatial extension of this meniscus, different critical
acceleration values are observed, for the same excitation
parameters. Introducing a phenomenological term of vis-
cous dissipation within a linear theory allows us to quan-
titatively describe the observed upshift in the critical ac-
celeration.
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