Automated synthesis of ^{18}F FBEM for labeling of thiol containing compounds

Paris Jérôme1, Thonon David1, Goukens Eve1, Kaisin Geoffroy1, Goblet David1, Lacroix Simon2 and Luxen André1

1 Cyclotron Research Center, Université de Liège, Belgium
2 Erasme Hospital, PET-SCAN Unit, Bruxelles

Objectives: ^{18}FFBEM, i.e. $\text{N-}[2-(4-[^{18}\text{F}]\text{fluorobenzamido})\text{ethyl}]\text{maleimide}$, is a useful synthon employed for the specific radiolabeling of thiol containing compounds, including peptides and proteins$^{[1]}$. The aim of the present work was to develop a fast, reproducible and fully automated synthesis of this compound in order to improve its availability as well as for obvious radioprotection matters.

Methods: A three-step synthetic pathway was followed (scheme 1) and implemented on a GE FastLab$^\text{TM}$ system by modifying the original ^{18}FFDG sequence and reagents cassette configuration. The process starts with the ^{18}F F nucleophilic substitution of the trimethylammonium ethylbenzoate compound 1 followed by NaOH hydrolysis performed in the same labeling reactor$^{[2]}$. After acidification (HCl 0.25M), the resulting ^{18}FFluorobenzoic acid 3 was trapped and purified on a solid phase extraction cartridge before being coupled to amino-maleimide compound 4 in the next step. This was carried out using diethylcyanophosphonate$^{[3]}$ in acetonitrile at 70°C. Then ^{18}FFBEM could be isolated and purified on a second SPE cartridge.

Results: The fully automated process takes around 55 minutes and the desired product is obtained with a decay-corrected radiochemical yield of 41% (n=11) and a radiochemical purity $\geq 90\%$ as determined by HPLC and TLC. Subsequent conjugation to thiol containing compounds was also carried out.

Conclusions: A completely automated radiosynthesis of ^{18}FFBEM has been developed with good radiochemical yields and purity. The resulting SPE purified maleimide synthon is suitable for the labeling of various thiol containing compounds under mild conditions.

Research support: The Walloon Region (NeoFor and Keymarker projects) and FRS-FNRS are gratefully acknowledged for financial support.

![Scheme 1: Radiosynthesis of ^{18}FFBEM](image-url)