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INTRODUCTION

This paper reports on an investigation of a series of compounds of the NOy family, based on
high resolution infrared solar observations made at the ISSJ (International Scientific Station
of the Jungfraujoch), Switzerland (46.55°N, 7.99°E, 3580 m a.s.l). These observations are
part of a long-term monitoring effort undertaken by the Liege group since the mid-1970s, and
integrated more recently as a contribution to the Network for the Detection of Stratospheric
Change (NDSC).

Currently, vertical column abundances of over 20 molecules are retrieved from solar spectra
recorded under clear sky conditions as regularly as possible, using two high resolution Fourier
transform infrared (2 to 15 um) spectrometers [1].

The columns are retrieved from the spectra by non-linear least squares spectral fitting, using
the SFIT 1.09¢ algorithm; a discussion of the retrieval procedure can be found in [2].

NO, BUDGET

NO,, the total reactive nitrogen, is defined as the sum of the following species: NO + NO;
+ NO; + 2(N»Os) + HNOs + HO,NO, + CIONO; + BrONO,. For the purpose of deriving the
NO, column trend above the Jungfraujoch, monthly mean columns of those species that can
easily be measured from the ground, i.e. NO, NO,, HNO; and CIONO,, have been calculated
from the consistent database spanning from 1985 to present. This procedure of computing
monthly means avoids giving excessive weight to months with high-density observations.
These mean columns are shown as dots in frames A to D of Figure 1; they have been modeled
with linear+sinusoidal functions (continuous curves). Trend values, referred to 1990.0, are
also indicated with their 1 o deviations.
The sum of these monthly mean columns, displayed in Figure 1, frame E, represents the most
important part of the total NOy as derived from the ISSJ data. The missing NO3, N2Os,
HO,NO, and BrONO,, not easily observable from the ground, represent less than 5 % of the
total NOy [3]
As for the individual species, the NOy trend has been simulated with a linear+sinusoidal
function (continuous curve); the resulting trend of (0.3 = 0.3) % per year, although barely
significant, is consistent with the trend of (0.35 = 0.04) % per year, found for the NOy gas
source N,O [4] (Figure 2, frame F). The important uncertainty in the NO, trend is mainly due
to the high variability of the HNO; columns, which is predominant during the November to
April months (circulation and heterogeneous processes).
Notice that the constituents considered in the present investigation show seasonal variations
summarized in the following table:

NO NO, HNO; CIONO,
Peak-to-peak variation (%) 34 74 28 37
Occurrence of maximum June-July | June-July | Feb.-March March
Occurrence of minimum January January August September
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Figure 1: column abundances above ISSJ, expressed in 10" molec/cm?
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HNO; AND HF COLUMNS CORRELATION.

In Figure 2, we have correlated the HNOj; columns with those of HF (with the HF trend
removed and reported to 1990.0) obtained on same days. Most of the points cluster about an
oblique line: the points on the left correspond to typical summer conditions, whereas those to
the right, generally correspond to air masses originating from the higher latitudes, enriched in
both HF and HNOs, as a consequence of the latters' latitudinal distribution.
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Figure 2: HNO; and HF columns correlation

An interesting episode in March - April 1996 is identified in Fig.2 by arrows and dates;
during that period, extremely high values of HF (the highest ever recorded above ISSJ) have
been observed.

At the end of March, the polar vortex was centered over Scandinavia and was still well
defined. Switzerland was near the edge of the vortex (on the 31% March, potential vorticity
was 40x107 szkg'ls'1 at the 475 K level). Air masses above the Jungfraujoch originated
from the polar regions and were thus enriched in HF; Figure 3 shows an example of back
trajectories for the 29™ March 1996, ending at the closest rawinsonde station (Payerne, 85 km
North-West of the Jungfraujoch). The vortex then slowly dissolved: by mid-April, only two
fragments remained, one centered over East Siberia, the other over Central Europe. Potential
vorticity reached again high values (38><10'6 Krnzkg'ls'l at the 475 K level on the 18™ April)
above the Jungfraujoch.

During that time period, no specially high values of HNO; were observed, as we could have
expected from the usual relationship between HF and HNOj; shown in Figure 2: based on the
latter, we should have measure HNOj; values around 5x10'® molec./cm? instead of the values
around 1.5x10'6 molec./cm? actually observed. This suggests that denitrification occurred in
these air parcels.
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Figure 3: back trajectories ending at Payerne, on the 29 March, 1996
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