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Introduction

• Multi-scale computational homogenization approach

Macro-scale problem

Vx ∈ Micro-scale problem

Scale transition: 
macro � micro
micro � macro
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Vx ∈

Representative Volume Element -RVE

Vy ∈
V∂

Micro-scale problem
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Introduction

• Macro –variables and micro- variables

– Micro-variables

• Equilibrium state

• Micro- strain

• Material law

– Macro-variables: averaging theory
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– Macro-variables: averaging theory

– Hill-Mandel condition

– Boundary condition at micro-scale must be defined in order to 

satisfy Hill-Mandel and kinematic averaging condition
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Introduction

• Boundary value problem at micro-scale

– Representative volume element (RVE)

– Boundary conditions (BC) at micro-scale

• Linear displacement BC:

• Constant traction BC:

• Periodic BC:
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Periodic boundary condition

• Compare with linear displacement BC and constant traction 

BC:

– Better estimation for a RVE size 

– More effective in terms of convergent rate

• Implementation in finite element context

– Periodic mesh (left image): easy by constraining on matching 

nodes
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nodes

– Non-periodic mesh (right image): difficult �work objective 



Periodic boundary condition

• Imposing PBC by polynomial interpolation

– Easy to implement

– Applicable for arbitrary meshes

– Applicable for 2-dimensional and 3-dimentional cases

– Allows to impose strongly the PBC from the “weakest

constraint” (linear displacement boundary condition)

corresponding to the polynomial order 1 to the “strongest
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corresponding to the polynomial order 1 to the “strongest

constraint” (classical PBC) corresponding to the polynomial

high enough order.



Imposing PBC by interpolation

• Method idea

– Displacement field of two opposite RVE sides is interpolated

by linear combinations of some shape functions.

– Degrees of freedom of two opposite RVE sides are then 

substituted by the coefficients of these shape functions
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substituted by the coefficients of these shape functions

• For imposing PBC

– Displacement on negative part � interpolation form

– Displacement form on positive part �PBC condition

• All DOFs on RVE boundary �interpolation coefficients a



Imposing PBC by interpolation

• Finite element implementation: 

– From interpolation form

• Displacement on negative part

• Displacement on positive part

•

• Shape function matrix        � user parameter

Department of Aerospace and Mechanical Engineering

• Shape function matrix        � user parameter

• Coefficient matrix       � new DOFs add to systems



Imposing PBC by interpolation

• Finite element implementation: 

– Imposing PBC in element level

• For element 1

• Node 1, 2 on RVE boundary

– Negative part:
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– Negative part:

– Positive part

• Element displacement vector 



Imposing PBC by interpolation

• Finite element implementation: 

– Imposing PBC in element level

• Finite element equations without constraints

• Element displacement constraints

• Finite element equation with constraints 
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• Finite element equation with constraints 

• Modified element stiffness

• Modified external element force vector



Polynomial interpolation

• 2 –dimensional interpolation

– Lagrange interpolation: global interpolation 

• Lagrange interpolation function

• Matrix form

• If n =1, linear displacement BC is recovered. 
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• If n =1, linear displacement BC is recovered. 

– Cubic spline interpolation: segment interpolation

• Divide to segments 

• Add slope to segment extremities 

• Hermit interpolation function of order 3

• Matrix form



Polynomial interpolation

• 3 –dimensional interpolation

– Patch Coons interpolation

• Displacement on edge � use 2-dimensional interpolation

• Displacement of interior nodes 

• � patch Coons formulation
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• By some manipulations 

• By matrix form   



Numerical examples

• 2 –dimensional cases

– Elastic material E = 70GPa, Poisson ration  = 0.3

– Plan strain state and small deformation

– With periodic hole structures: PBC with matching node and 

with polynomial interpolation � Method validation
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Periodic mesh

from periodic materials

Non-periodic mesh

from periodic materials



Numerical examples

• 2 –dimensional cases

– With periodic hole structures

• CEM = constraint elimination method for periodic mesh

Department of Aerospace and Mechanical Engineering

Convergence  of effective property in terms of new DOFs added to system



Numerical examples

• 2 –dimensional cases

– With random hole structures: non-periodic mesh

� method efficiency
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Convergence  of effective property in 

terms of new DOFs added to system

Non-periodic mesh

from random materials



Numerical examples

• 3 –dimensional cases

– With periodic structure: periodic mesh

• Lagrange: 

– order 5 

• Cubic spline:

– 5 segments

Department of Aerospace and Mechanical Engineering



Numerical examples

• 3 –dimensional cases

– With periodic structure: periodic mesh

• Von-Mises stress distribution
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Cubic splineLagrangeCEM



Numerical examples

• 3 –dimensional cases

– With random structure: non- periodic mesh

• Lagrange: 

– order 15 

• Cubic spline:

– 10 segments
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Numerical examples

• 3 –dimensional cases

– With random structure: non- periodic mesh

• Von-Mises stress distribution
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Cubic splineLagrange



Conclusion and perspective

• Conclusion

– A new method to enforce the PBC is presented

• By using interpolation formulation

• For arbitrary meshes

• For 2-dimensional and 3-dimensional cases

• Better estimation in compared with linear displacement BC which 
usually uses for non-periodic meshes
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usually uses for non-periodic meshes

– Key advantage of this method is the elimination of the need of 

matching nodes

– Some examples demonstrated the method efficiency. 

• Perspective

– Study effective properties of foams by using periodic boundary 

condition 


