#### University of Liège Department of Aerospace and Mechanical Engineering

# Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation

V. D. Nguyen, E. Béchet, C. Geuzaine, L. Noels Computational & Multiscale Mechanics of Materials, ULg Chemin des Chevreuils 1, B4000 Liège, Belgium

ACOMEN-November 2011





# Outline

- Introduction
- Periodic boundary condition (PBC)
- Imposing PBC by interpolation
- Polynomial interpolation
- Numerical examples
- Conclusion and perspective





Multi-scale computational homogenization approach







- Macro –variables and micro- variables
  - Micro-variables
    - Equilibrium state  $div(\sigma) + \rho b = 0$
    - Micro- strain  $\mathcal{E}$
    - Material law
- $\varepsilon = \nabla_{s} u$  $\sigma = \hat{\sigma}(\varepsilon, \alpha, y)$



- Macro-variables: averaging theory

$$\overline{\sigma} = \frac{1}{V} \int_{V} \sigma dV \qquad \overline{\varepsilon} = \frac{1}{V} \int_{V} \varepsilon dV \qquad \overline{C} = \frac{d\overline{\sigma}}{d\overline{\varepsilon}}$$
  
Hill-Mandel condition 
$$\overline{\sigma} : \overline{\varepsilon} = \frac{1}{V} \int_{V} \sigma : \varepsilon dV$$

 Boundary condition at micro-scale must be defined in order to satisfy Hill-Mandel and kinematic averaging condition





- Boundary value problem at micro-scale
  - Representative volume element (RVE)
  - Boundary conditions (BC) at micro-scale
    - Linear displacement BC:  $\tilde{u}_i = u_i \bar{\varepsilon}_{ij} x_j = 0$   $\forall x \in \partial V$
    - Constant traction BC:  $t_i = \bar{\sigma}_{ij}n_j$   $\forall x \in \partial V$

• Periodic BC: 
$$u_i^+ - u_i^- = \bar{\varepsilon}_{ij}(x_j^+ - x_j^-)$$
  
 $t_i^+ = -t_i^-$   
 $\forall x^+ \in \partial V^+ \quad \forall x^- \in \partial V^-$ 



Department of Aerospace and Mechanical Engineering

## Periodic boundary condition

- Compare with linear displacement BC and constant traction BC:
  - Better estimation for a RVE size
  - More effective in terms of convergent rate
- Implementation in finite element context
  - Periodic mesh (left image): easy by constraining on matching nodes
  - Non-periodic mesh (right image): difficult →work objective





Department of Aerospace and Mechanical Engineering



## Periodic boundary condition

- Imposing PBC by polynomial interpolation
  - Easy to implement
  - Applicable for arbitrary meshes
  - Applicable for 2-dimensional and 3-dimentional cases
  - Allows to impose strongly the PBC from the "weakest constraint" (linear displacement boundary condition) corresponding to the polynomial order 1 to the "strongest constraint" (classical PBC) corresponding to the polynomial high enough order.





# Imposing PBC by interpolation

- Method idea
  - Displacement field of two opposite RVE sides is interpolated by linear combinations of some shape functions.

$$\boldsymbol{u}(\boldsymbol{s}) = \mathbb{S}(\boldsymbol{s}) = \sum_{i=0}^{n} \mathbb{N}_{i}(\boldsymbol{s})\boldsymbol{a}_{i}$$

- Degrees of freedom of two opposite RVE sides are then substituted by the coefficients of these shape functions
- For imposing PBC
  - Displacement on negative part  $\rightarrow$  interpolation form
  - Displacement form on positive part  $\rightarrow$  PBC condition

$$u_{-}(s) = \mathbb{S}(s)$$
, and  
 $u_{+}(s) = \mathbb{S}(s) + \bar{\varepsilon}.(x^{+} - x^{-})$ 

All DOFs on RVE boundary →interpolation coefficients a





# Imposing PBC by interpolation

- Finite element implementation:
  - From interpolation form
    - Displacement on negative part  $u_{-} = \widetilde{\mathbb{N}} \widetilde{q}$
    - Displacement on positive part

$$u_+ = \tilde{\mathbb{N}} \tilde{q} + \bar{arepsilon} (x^+ - x^-)$$

- Shape function matrix  $\tilde{\mathbb{N}} \rightarrow$  user parameter
- Coefficient matrix  $ilde{q} imes$  new DOFs add to systems





## Imposing PBC by interpolation

- Finite element implementation:
  - Imposing PBC in element level
    - For element 1

$$\begin{aligned} \boldsymbol{u}_{e}(x,y) &= N_{1}(x,y)\boldsymbol{u}_{1} + N_{2}(x,y)\boldsymbol{u}_{2} + N_{3}(x,y)\boldsymbol{u}_{3} + N_{4}(x,y)\boldsymbol{u}_{4} = \mathbb{N}_{e}\boldsymbol{q}_{e} \\ \boldsymbol{q}_{e}^{T} &= \left[ \begin{array}{ccc} \boldsymbol{u}_{1}^{T} & \boldsymbol{u}_{2}^{T} & \boldsymbol{u}_{3}^{T} & \boldsymbol{u}_{4}^{T} \end{array} \right]. \end{aligned}$$

- Node 1, 2 on RVE boundary
  - $\begin{array}{rcl} \mbox{ Negative part } u_1 & = & \mathbb{N}_1 \tilde{q} \\ u_2 & = & \mathbb{N}_2 \tilde{q} \\ \mbox{ Positive part } & u_1 & = & \mathbb{N}_1 \tilde{q} + \bar{\varepsilon} (x^+ x^-) \\ u_2 & = & \mathbb{N}_2 \tilde{q} + \bar{\varepsilon} (x^+ x^-) \end{array}$



• Element displacement vector

$$egin{aligned} q_e = egin{bmatrix} u_1 \ u_2 \ u_3 \ u_4 \end{bmatrix} = egin{bmatrix} \mathbb{N}_1 ilde q + \langle g 
angle \ \mathbb{N}_2 ilde q + \langle g 
angle \ \mathbb{N}_2 ilde q + \langle g 
angle \ \mathbb{N}_3 \ u_4 \end{bmatrix} = \mathbb{L}_e ilde q_e \ + ilde g_e \end{aligned}$$



Department of Aerospace and Mechanical Engineering



- Finite element implementation:
  - Imposing PBC in element level
    - Finite element equations without constraints

$$\sum_{e} \left( \boldsymbol{\delta} \boldsymbol{q}_{e}^{T} \boldsymbol{K}_{e} \boldsymbol{q}_{e} \right) - \sum_{e} \left( \boldsymbol{\delta} \boldsymbol{q}_{e}^{T} \boldsymbol{F}_{e} \right) = 0$$

• Element displacement constraints  $\delta q_e = \mathbb{L}_e \delta ilde q_e$ 

• Finite element equation with constraints

$$\sum_{e} \left( \delta \tilde{\boldsymbol{q}}_{e}^{T} \mathbb{L}_{e}^{T} \boldsymbol{K}_{e} \mathbb{L}_{e} \tilde{\boldsymbol{q}}_{e} \right) - \sum_{e} \left( \delta \tilde{\boldsymbol{q}}_{e}^{T} \mathbb{L}_{e}^{T} \boldsymbol{F}_{e} - \delta \tilde{\boldsymbol{q}}_{e}^{T} \mathbb{L}_{e}^{T} \boldsymbol{K}_{e} \tilde{\boldsymbol{g}}_{e} \right) = 0$$

$$\sum_{e} \delta \tilde{\boldsymbol{q}}_{e}^{T} \left( \tilde{\boldsymbol{K}}_{e} \tilde{\boldsymbol{q}}_{e} - \tilde{\boldsymbol{F}}_{e} \right) = 0 \,,$$

- Modified element stiffness  $ilde{m{K}}_e = \mathbb{L}_e^T m{K}_e \mathbb{L}_e$
- Modified external element force vector  $\tilde{F}_e = \mathbb{L}_e^T (F_e K_e \tilde{g}_e)$





# Polynomial interpolation

- 2 –dimensional interpolation
  - Lagrange interpolation: global interpolation  $S(s) = \sum_{i=1}^{n} a_i s^i$ 
    - Lagrange interpolation function

$$u = S(s) = \sum_{i=0}^{n} l_i(s)u_i$$
  $l_i(s) = \prod_{j=0, j \neq i}^{n} \frac{s - s_j}{s_i - s_j}$ 

- Matrix form  $\boldsymbol{u}(s) = \tilde{\mathbb{N}}(s)\tilde{\boldsymbol{q}} \quad \tilde{\boldsymbol{q}}^T = [\boldsymbol{u}_0^T...\boldsymbol{u}_n^T]$
- If n =1, linear displacement BC is recovered.
- Cubic spline interpolation: segment interpolation
  - Divide to segments  $[(s_{i-1}, u_{i-1}) (s_i, u_i)]$
  - Add slope to segment extremities  $\theta_{i-1}, \theta_i$
  - Hermit interpolation function of order 3
  - $u(s) = H_1(\xi(s))u_{i-1} + H_2(\xi(s))\theta_{i-1} + H_3(\xi(s))u_i + H_4(\xi(s))\theta_i$
  - Matrix form  $\boldsymbol{u}(s) = \tilde{\mathbb{N}}(\xi) \tilde{\boldsymbol{q}} \quad \tilde{\boldsymbol{q}}^T = [\boldsymbol{u}_0^T \boldsymbol{\theta}_0^T ... \boldsymbol{u}_N^T \boldsymbol{\theta}_N^T]$



# **Polynomial interpolation**

- 3 –dimensional interpolation
  - Patch Coons interpolation
    - Displacement on edge  $\rightarrow$  use 2-dimensional interpolation



- By some manipulations  $u(\xi,\eta) = P^{-}(\xi) + Q^{-}(\eta) u_A$
- By matrix form  $\boldsymbol{u}(\xi,\eta) = \tilde{\mathbb{N}}_{P}(\xi)\boldsymbol{\tilde{q}}_{P} + \tilde{\mathbb{N}}_{Q}(\eta)\boldsymbol{\tilde{q}}_{Q} = \tilde{\mathbb{N}}(\xi,\eta)\boldsymbol{\tilde{q}}$





- 2 –dimensional cases
  - Elastic material E = 70GPa, Poisson ration = 0.3
  - Plan strain state and small deformation
  - With periodic hole structures: PBC with matching node and with polynomial interpolation → Method validation





Periodic mesh from periodic materials

Non-periodic mesh from periodic materials



Department of Aerospace and Mechanical Engineering



- 2 –dimensional cases
  - With periodic hole structures
    - CEM = constraint elimination method for periodic mesh



Convergence of effective property in terms of new DOFs added to system





#### • 2 –dimensional cases

- With random hole structures: non-periodic mesh
  - → method efficiency



Non-periodic mesh from random materials



Convergence of effective property in terms of new DOFs added to system





#### • 3 –dimensional cases

#### - With periodic structure: periodic mesh







Université

- 3 –dimensional cases
  - With periodic structure: periodic mesh
    - Von-Mises stress distribution





#### • 3 –dimensional cases

- With random structure: non- periodic mesh
  - Lagrange:
    - order 15
  - Cubic spline:
    - 10 segments









- 3 –dimensional cases
  - With random structure: non- periodic mesh
    - Von-Mises stress distribution







## Conclusion and perspective

- Conclusion
  - A new method to enforce the PBC is presented
    - By using interpolation formulation
    - For arbitrary meshes
    - For 2-dimensional and 3-dimensional cases
    - Better estimation in compared with linear displacement BC which
      usually uses for non-periodic meshes
  - Key advantage of this method is the elimination of the need of matching nodes
  - Some examples demonstrated the method efficiency.
- Perspective
  - Study effective properties of foams by using periodic boundary condition



