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1 INTRODUCTION

Structural optimization consists in formulating the design problem of structural compo-
nents as an optimization problem in order to use the power of mathematical optimization
tools.

From a mathematical point of view, a quite general statement of the optimization
problem is given as following

(P )

8>><
>>:

min
x

g0(x)

s.t.: gj(x) � �gj j = 1 : : : m
xi � xi � xi i = 1 : : : n

(1)

The function g0 is the objective function of the problem, i.e. a cost function or a
performance index that one wants to minimize in order to have a better design. In topology
optimization, this is for example the compliance of the structure under the considered load
case.

The set of constraint functions gj (in number m) are expressing the restrictions the
design is subject to in order to be feasible. For example these functions are some bounds
upon a stress measure to have resistance, restricted displacements, a volume resource or
perimeter bound : : :

The n variables xi are the design variables of the problem, that is, the parameters,
which can be modi�ed, to improve the design. In the topology optimization context, the xi
variables are the element densities and the orientation parameters of the microstructure.
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Figure 1: Approximation concept

The design variable values are also subject to some very simple restrictions, because of some
physical or mathematical reasons (the density lies between 0 and 1, and the orientation can
be searched between 0 and � because of periodicity). Other constraints on design variables
can come from technological or manufacturing arguments like prescribed density regions
in topology optimization. All these special constraints on design variables are called side
constraints. They generally call for a special treatment in the algorithm because of their
very simple structure.

The direct solution of optimization problem (P ) is totally prohibitive in structural
optimization, and furthermore in topology optimization, because of the computational cost
of the structural and sensitivity analysis of the problem. Indeed the problem of structural
optimization is highly non-linear, and implicit in terms of the design variables so that each
function evaluation would require a Finite element (F.E.) analysis.

As soon as the seventies, Schmidt and his co-workers (e.g. Schmidt and Farshi [34],
Schmidt and Fleury [35]) proposed an interesting way to circumvent the problem while
using mathematical programming tools. The approximation concepts approach replaces the
primary optimization problem (P ) with a sequence of explicit approximate sub-problems
having a simple algebraic structure, and built from the available information (function
values, �rst and second order derivatives) at the current design point or at the former
iteration points.

( ~P )

8>><
>>:

min
x

~g0(x)

s.t.: ~gj(x) � �gj j = 1 : : : m
xi � xi � xi j = 1 : : : n

(2)

where ~g0 and ~gj denotes the approximations of objective function g0 and constraint func-
tions gj . These approximations can be regarded as some kind of expansions of the response
functions around the current design point xk. Di�erent techniques have been proposed, but
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Figure 2: Iterative scheme with SCP approach

the most famous ones remain CONLIN by Fleury and Braibant [24] and MMA (Method
of Moving Asymptotes) by Svanberg [38]

However the success of the approximation strategy comes from the fact that the sub-
problems ( ~P ) can be solved eÆciently with adapted mathematical programming algorithms.
Up to now the most eÆcient strategy is the dual method proposed initially by Fleury [17]
but used by many other authors like Svanberg [38]. Dual methods are well adapted to
structural problems, because the dimensionality of the dual solution space is generally
much lower than the primal design space. With eÆcient algorithms, dual solvers are
able to solve sub-problems within reasonable computational time. For sizing and shape
optimization, solution time is less than 1 percent of the F.E. computation time. When
dealing with compliance topology problems, the same character is preserved.

To summarize, the solution strategy of optimization problems is based on the following
steps:

1. For the current design characterized by the design variables xk, perform a Finite
Element analysis and its sensitivity analysis.

2. From the results of the current structural analysis, generate an approximate ( ~P ).

3. Solve the sub-problem ( ~P ) with an eÆcient solver, like dual solver.

4. Adopt the solution of the approximate sub-problem x? as a the new design xk+1 and
go back to 1 until convergence.

The strategy combines both concepts of approximation and dual solution and it is now
generally known as the sequential convex programming approach (SCP) as suggested by
Fleury in Ref. [20, 22].
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The SCP approach have demonstrated its eÆciency in academic and industrial appli-
cations. One can come to a nearly stationnary solution generally within 20 iteration steps,
independently of the number of design variables. For topology optimization convergence
speed can be a bit slower, because of the higher complexity of the problem; it is not rare
to have to wait for 50 or 100 iterations for having a stable solution.

Before studying the numerical solution techniques into details, it is important to remind
the main characteristics of optimal material distribution problems in order to be able to
select the most suited algorithms to solve these problems. Topology optimization problems
are large scale optimization problems. It results that extension of traditional SCP methods
must be considered carefully.

� The number of design variables is large or very large, i. e. in usual topology problems,
one has to consider from 1.000 to 100.000 density variables.

� The number of constraints is generally quite low when the problem formulation relies
on global constraints. For example, in compliance type problems, one has to take
into account as many compliance responses as the number of load cases plus volume
and perimeter constraints. This means in turn that one has to consider around 10
restrictions. The number of restrictions being much smaller than the number of
design variables, we are in a favorable situation for applying dual algorithms.

� This situation is totally di�erent when local constraints like stress constraints are con-
sidered in the design problem. Indeed one has to cope with one constraint per �nite
element, which means a number of constraint that is of the same order of magnitude
as the number of design variables. This could also be the case if slope constraints are
included in the design as in Sigmund and Petersson [31]. Thus the problem is a large
scale problem in the design variable space and in the dual space. Under these con-
ditions, advantages of dual algorithms are lower, but work done in Ref. [13] showed
that dual solvers are still able to produce solutions with a computation time that is
of the same order of magnitude as the F.E. analysis even when there are around a
thousand of constraints.

There is also another characteristic related to stress constraint which complicates the task
of the optimizer: the singularity phenomenon of stress constraints. This diÆculty is al-
leviated by using a perturbation technique (�-relaxation technique as proposed by Cheng
and Guo [9]). So to consider stress constraints, one has to design a additional strategy to
manage the extra perturbation parameter.

This lecture is devoted to explain the basic elements of SCP method and in particular
its application to topology optimization problems, which are very large scale problems.
Despite the high level of integration of the di�erent concepts in available implementations
of SCP, this study will still distinguish in this presentation the two main concepts as pointed
out by [20, 22]:

� The solution aspect based on dual methods, which will be explored in section 2.
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� The approximation concept and di�erent approximation schemes that will be reviewed
in section 3.

Finally as our goal is to apply Sequential Convex programming to topology problems,
di�erent issues particular to topology problems will be reviewed in section 4 and 5. At
�rst, we will see how an eÆcient approximation can be built for the perimeter constraint
(section 4). Then we will have a careful study of the management of the �-relaxation
technique of stress constraint (section 5).

2 DUAL SOLUTION ALGORITHMS

2.1 Lagrange function

Suppose that we have to solve the following non linear optimization problem:

min
x

f(x)

s.t. gj(x) � 0 j = 1; : : : ;m (3)

where functions f(x) and gj(x) are assumed to be continuous and di�erentiable.

It is classic to de�ne the Lagrange function associated to problem (3):

L(x; �) = f(x) +

mX
j=1

�jgj(x) (4)

where the �j � 0 are Lagrange multipliers associated to each constraint gj (and so in
number m as the constraints). The new variables �j are generally called dual variables
since there is a one-to-one association with design constraints. Conversely the original
design variables x of the problem are said primal variables of the problem.

One can remark that the Lagrange transformation replaces the constraints gj(x) � 0
by a linear term �j gj(x) in the objective function. This can be interpreted as adding to
objective function f(x) a linear cost, with marginal price �j, which has to be paid whenever
the constraint is violated.

Lagrange function transforms the optimization constrained problem into an uncon-
strained problem. The objective function of this new optimization problem is precisely the
Lagrangian function L(x; �) and the design variables are both the x and � variables.

min
x

max
��0

L(x; �) (5)

Maximization over � a�ects an in�nite cost (penalty) to Lagrange function when constraints
are violated gj(x) > 0. The price of this transformation is that the dimension of the
optimization growths from n variables to n+m ones.
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2.2 Karush-Kuhn-Tucker conditions

Theorem 1 Necessary conditions of optimality of contrained problems.
If x? is an optimum of problem (3), and if x? is a regular point, Then one can �nd a vector
of Langrange multipliers �? = (�?1; : : : ; �

?
m) such that

@f(x�)

@xi
+

mX
j=1

��j
@gj(x

�)

@xi
= 0 8 i (6)

gj(x
�) � 0 (7)

��j � 0 (8)

��j gj(x
�) = 0 8 j (9)

The Karush-Kuhn-Tucker (KKT) conditions stated as below consist of four types of
conditions, namely

� Stationarity of the Lagrange function L(x; �) with respect to x,

� Primal feasibility, which means that x? is a feasible point,

� Dual feasibility, which means that the Lagrange multipliers �? are non negative,

� Complementary slackness, which means that the Lagrange multipliers corresponding
to inactive constraints are zero.

Remark 1 A point x? is a regular point of the problem, if all the gradient vectors rgj of
active constraints (i.e. gj(x

?) = 0) are linearly independent.

2.3 Introduction to duality

As remarked above, the �rst KKT condition (6) implies the solution of the system:

rx L(x; �
?) = 0 (10)

This condition is equivalent to say that x? is the solution of minimization problem:

min
x

L(x; �?)

Imagine now that, for any Lagrange vector, i.e.

� = (�1; : : : ; �m) such that �j � 0 j = 1 : : : m

one can �nd the solution of the minimization problem (called Lagrangian problem)

min
x

L(x; �) (11)
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This gives rise to a functional relationship of dependency of primal variables x in terms of
the new dual variables �.

x = x(�) (12)

Substituting primal variables in terms of function (12), it is possible to rewrite Lagrange
function L(x; �) in terms of dual variables � solely

`(�) = L(x(�); �)

= f(x(�)) +

mX
j=1

�j gj(x(�)) (13)

This function `(�) is called dual function of the problem.

Optimization problem that is related to dual function is a maximization problem, called
dual problem (while original problem is called primal problem):

max
�j

`(�)

s.t. �j � 0 j = 1; : : : ;m (14)

Solution of dual problem determines the optimal Lagrange multipliers �?, which satisfy
KKT conditions. One can show that dual problem has the following properties:

� If primal problem is a minimization problem, dual problem is a maximization prob-
lem;

� Dual problem possesses a solution if primal problem does;

� A solution of dual problem also provides a solution to primal problem.

2.4 Weak duality

With very little assumptions on f and gj , one can state the most general de�nition of dual
function as follows:

`(�) = inf
x

L(x; �) (15)

So dual function exists even for non convex problems or discrete valued design variable
problems, etc.

With very weak assumptions on f and gj , one can prove that `(�) is concave. However,
dual function is non-smooth, so that derivative must be replaced by the sub-gradient.

Dual problem is de�ned as the maximization problem

max
�j

`(�)

s.t. �j � 0 j = 1; : : : ;m (16)
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Since dual function `(�) is a concave function of �, it is possible to state that every
local optimum of `(�) is a global optimum. Therefore the dual problem will in general
be more easily solved than the primal problem (for example when dealing with integer
programming). This is one of the reasons why the concept of duality has been found to be
very useful in mathematical programming. However because of the non-smoothness of dual
function, one has to resort to non smooth maximization algorithms, which are generally
less eÆcient.

General properties of dual function

For any feasible x and for any Lagrange vector �, there holds:

f(x) � `(�) (17)

Going along, if �? is the solution of dual problem, and if x? is the optimum of the primal
problem, one has

f(x?) � `(�?) (18)

This means that dual function is always a lower bound of primal objective function value.
The gap G = f(x?) � `(�?) is called duality gap. In addition, primal point associated to
optimal Lagrange multiplier through Lagragian problem

arg inf
x

L(x; �?) (19)

may not be realized or may not be a feasible point

2.5 Strong duality

Now suppose that we want to solve the convex problem:

min
x 2X

f(x)

s.t. gj(x) � 0 j = 1; : : : ;m (20)

where functions f(x) and gj(x) are assumed to be C1 (i.e. continuous and di�erentiable),
and convex. The set X of feasible design variables is also convex.

The set X is usually made of side constraints on design variables, which is obviously a
convex set:

X = fxi j xi � xi � xi i = 1 : : : ng (21)

In addition, it is assumed that the Slater condition (or quali�cation of the constraint)
is ful�lled:

9 ~x : gj(~x) < 0 8 j (22)
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Theorem 2 If the problem (20) is a convex problem and if Slater condition is satis�ed,
then, there is at least one Lagrange multiplier vector �? such that

f(x?) = min
x

L(x; �?) (23)

and there is no duality gap

f(x?) = `(�?) (24)

Corollary 1 Necessary and suÆcient conditions of optimality:
If the problem (20) is a convex and if functions f(x) and gj(x) are di�erentiable and if
Slater condition is satis�ed, then x? is the primal optimal point and �? the optimal dual
point if and only if Karush-Kuhn-Tucker conditions are satis�ed

Corollary 2 If the problem (20) is a convex and if Slater condition is satis�ed, the primal
problem (20) is completely equivalent to solve the dual problem:

min
�j

`(�)

s.t. �j � 0 j = 1; : : : ;m (25)

with dual function

`(�) = min
x 2X

L(x; �) (26)

This is a consequence of the nature of the Lagrange function. If f(x) and gj(x) are
C1 and convex functions, Lagrange function L(x; �) has a saddle point in (x?; �?), which
means that:

L(x?; �) � L(x?; �?) � L(x; �?) (27)

Thence it is possible to show the equivalence between the following optimization problems:

min
x 2X

max
�� 0

L(x; �) , max
�� 0

min
x 2X

L(x; �) (28)

As left hand side problem is an equivalent of primal problem, and right problem is the dual
maximization, one gets the equivalence between primal and dual problems.
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2.6 Dual function properties in strong duality [20]

Concavity

Dual function `(�) is concave.

Lower bound and duality gap

Generally speaking, dual function is a lower bound of primal function, but for convex
problems, there is no duality gap:

`(�?) = f(x?)

This means that the dual solution is equivalent to the primal solution.

Gradient of dual function

The �rst derivatives of dual function with respect to Lagrange multiplier is simply the
constraint value associated to that multiplier in point x(�):

@`(�)

@�k
= gk(x(�)) (29)

The proof of this formula is easy when deriving dual function:

@`(�)

@�k
=

@

@�k
ff(x(�)) +

mX
j=1

�j gj(x(�))g

=
nX
i=1

2
4@f(x(�))

@xi
+

mX
j=1

�j
@gj(x(�))

@xi

3
5 @xi

@�k
+ gk(x(�))

The �rst contribution vanishes because it is the optimality conditions of the Lagrangian
problem leading to de�nition of x(�).

From result (29), its comes that the evaluation of the gradient of the dual function is
very easy to calculate.

Optimality conditions of dual problem

It comes from the previous property that the optimality conditions of the quasi-unconstrained
dual problem can be written as follows:

@`(�)

@�k
= 0 if �k > 0 (30)

@`(�)

@�k
< 0 if �k = 0 (31)

A �rst algorithm for dual maximization

These conditions indicate that the maximum of the dual function is attained when the
constraints are satis�ed exactly (as equalities) for �j > 0 and as inequalities if �j = 0.
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Going a bit further, we can propose a �rst algorithm based on the steepest ascent method
to maximize the dual function:

�+ = � + �r` (32)

or

�+j = �j + � gj(x(�)) (33)

where � is a step size. Thus a dual variables �j increases if the corresponding constraint gj is
violated, whereas it decreases (possibly reaching zero) if gj is negative (and satis�ed). From
these considerations, it results an intuitive interpretation of the dual method approach: the
approach attempts to satisfy the inequality constraints by adjusting the values of the dual
variables.

Since non negativity constraints are very easy to take into account, classical algorithms
for unconstrained maximization can be readily adapted to solve quasi-unconstrained dual
problem. In particular, conjugate gradient method is well suited since computation of the
gradient is straight forward: it needs computing the constraints values gj(x(�)) solely.

Separable case

The main diÆculty of the dual approach is to compute the relationships between primal
and dual methods x(�):

x(�) = arg min
x 2X

L(x; �) (34)

Solving the minimization problem has to be repeated a lot of times, and this might lead to a
prohibitive computational cost. However if the problem has some certain special structure,
as separable problems, this is not cumbersome. In addition to convexity, separability is an
essential property for dual formulation to be eÆcient.

A function f(x) is said to be separable if the function be written as sum of functions
fi(xi), which depends only on the single variable xi.

f(x) =

nX
i=1

fi(xi) (35)

Separable functions bene�t form some computationally important properties. In particular,
the Hessian matrix of such function is diagonal.

The constrained problem (20) is a separable problem programming problem if each
function f(x), gj(x) is itself separable. This implies that the Lagrangian function L(x; �)
is separable too.

L(x; �) =

nX
i=1

Li(xi; �)
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As a result, the n-dimensional Lagrangian problem can be broken up into n one-dimensional
Lagrangian problems

min
x 2X

L(x; �) =

nX
i=1

min
xi 2Xi

Li(xi; �) (36)

where each one dimensional problem can be solved separately. Thus the dual function can
be written as follows:

`(�) =

nX
i=1

`i(�) =

nX
i=1

f min
xi 2Xi

Li(xi; �)g (37)

In may cases the single-variable minimization problem has a simple algebraic structure
and it can be solved in closed form, thus yielding an explicit dual function.

Second order derivatives of dual function

To get second order derivatives of dual function, one derives the expression of �rst order
derivatives given in (29) one more time, which gives:

@2`(�)

@�k@�l
=

@

@�l
gk(x(�)) =

nX
i=1

@gk
@xi

@xi(�)

@�l
(38)

One remarks immediately that because of the presence of term @xi(�)
@�l

the second order
derivatives can be discontinuous. Indeed, when side constraints are taken into account in
Lagrangian problem (11) in order to be treated explicitly, the function relationship x(�)
can be �rst order discontinuous. This will be explained in more details later.

Evaluation of this term @xi(�)
@�l

can be made from KKT conditions. Derivations of KKT
conditions (6) with respect to �l gives:

nX
k=1

2
4 @2f

@xi@xk
+

mX
j=1

�j
@2gj

@xi@xk

3
5 @xk(�)

@�l
+

@gl(�)

@xi
= 0

Going to matrix notations, one recognizes the Hessian matrix of the Lagrange function and
gradient vector of constraint gl with respect to primal variables:

r2
xx L(x; �)

@x(�)

@�l
+ rx gl = 0

If side-constraints are treated explicitly, one has to restrict this relation to free variables
(variables, which are not �xed at their lower or upper bounds). So one has to consider
matrix G instead of r2

xxL. Matrix G is obtained from r2
xxL in deleting rows and columns

corresponding to �xed variables. One gets now:

G
@x(�)

@�l
+ rxgl = 0 (39)
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If one also notes by N the matrix whose columns are made with the gradient vectors of all
constraints

N = [rg1 : : :rgm]
and if one introduces result (39) into (38), one gets the �nal expression of Hessian of dual
function: �

@2`(�)

@�k@�l

�
= �NT G�1 N (40)

We must repeat that this Hessian is only continuous by pieces. Discontinuity of dual
Hessian occurs along hyper-planes of equations

xi(�) = xi and xi(�) = xi (41)

This has a major impact on dual maximization, since greatest care has to given to that
property to built second order algorithms for dual maximization. Classical Newton or
quasi-Newton methods can only be applied on subregions where the set of free and �xed
design variables is freezed. Building an eÆcient strategy to �nd the optimal set of free and
�xed design variables is one of the major issue of dual optimizer construction.

2.7 Application to quadratic problems with linear constraints

We illustrate the dual approach on the quadratic problem with linear inequality constraints.
The problem statement is the following:

min
x

1

2
xT x

s.t. CT x � d

where C is a n�m matrix of the constraint gradients (which are are assumed to be linearly
dependent). The Lagrangian function of the problem is:

L(x; �) =
1

2
xT x � �T (CTx � d)

Optimality condition (KKT conditions) are:

rxL = x � �T C = 0

�CT x + d � 0

� � 0

�T (CT x � d) = 0

The �rst condition is the solution of the Lagrangian problem, which leads to the relationship
between primal and dual variables:

x(�) = C �
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This relation is fully explicit.

Replacing primal variables into Lagrangian function, one gets the dual function:

`(�) =
1

2
x(�)T x(�) � �T (CTx(�) � d)

=
1

2
�TCTC� � �T (CTC� � d)

= �1

2
�TCTC� + �T d

Gradient of dual function is given by:

r`(�) = �CTC� + d

= d � CTx(�)

which is the value of primal constraints, in agreement with the general theory.

From this expression, one gets also easily the Hessian matrix of dual function:

r2`(�) = �CTC

This Hessian matrix is constant. Thus dual function of a quadratic problem is quadratic
function. It has the fully explicit form:

`(�) = �1

2
�TA� + �T d

where A = CTC denotes the negative of the dual Hessian matrix.

In the case of equality constraint, dual variables are unrestricted in sign. Therefore
the maximum of dual function can simply be obtained by stating that its gradient must
vanish:

r`(�) = �A� + d = 0

This leads to the solution:

�? = A�1 d

From the dual solution, one recovers the optimal primal solution with the help of primal-
dual relationships:

x? = C �?

In the case of inequality constraints, the dual variables are subject to non negativity
side constraints, and one has to solve dual maximization problem:

max
�

�1

2
�TA� + �T d

s.t. �j � 0

14



After solving this quasi-unconstrained maximization problem in the dual space, one recov-
ers primal solution from the same primal-dual relationships as before:

x? = C �?

Dual maximization is the most natural and rigorous way to select automatically the
optimum set of Lagrange multipliers. In addition, as the number of dual variables is
often smaller than the number of primal variables, the dimensionality of the optimization
problem we actually solve is smaller.

Example of quadratic separable problem

min
x1 ; x2

1

2
x21 +

1

2
x22

s.t. x1 + x2 � 4

x1 � x2 � �4

2.8 Treatment of side constraints

Let us consider the following separable, quadratic problem, with linear inequality and
side-constraints:

min
x

1

2

nX
i=1

x2i

s.t.

nX
i=1

cij xi � dj j = 1 : : : m (42)

xi � xi � xi i = 1 : : : n

The side constraints, which impose lower and upper bounds on the design variables can,
of course, be considered as linear inequality constraints. However this would increase
dramatically the number of dual variables, and thus this would reduce potential advantage
of dual method by increase dimensionality of dual workspace. Therefore, eÆciency calls for
a particular and separate treatment of these very simple constraints, apart from general
constraints.

The Lagragian problem is

min
xi � xi �xi

1

2

nX
i=1

x2i �
mX
j=1

�j (

nX
i=1

cij xi � dj) (43)

Because of the separability property, the n-dimensional problem can be split into n one-
dimensional problems relative to each variable "i":

min
xi � xi �xi

Li(xi; �) =
1

2
x2i � (

mX
j=1

�j cij) xi (44)
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Figure 3: Illustration of Lagrangian problem with side constraints [20]

The solutions of these problems are obtained by expressing the optimality conditions,
i.e. vanishing the �rst order derivative with respect to xi:

@Li
@xi

= xi � (

mX
j=1

�j cij) = 0 (45)

This yields the primal-dual relationship in closed form:

x?i = (
mX
j=1

�j cij) (46)

This expression holds if the side constraint are ignored. Now to enforce side-constraints,
one has to consider three situations (see �gure 3):

xi(�) = x?i if xi � x?i � xi; (47)

xi(�) = xi if x?i � xi; (48)

xi(�) = xi if x?i � xi: (49)

Even if the solution introduces di�erent conditions, the primal-dual relations x = x(�) are
still available under closed form. Nonetheless considering di�erent cases leads to a non-
smooth expression. Indeed the derivation of this expression is discontinuous when changing
from one condition to another, that is when a �xed variable become free or conversely.

The dual function is formed by inserting these primal-dual relationships into the La-
grangian function, which leads to the following statement of the dual problem (one cannot
�nd anymore an explicit expression of dual function):

max
�

1

2

nX
i=1

x2i (�) �
mX
j=1

�j (

nX
i=1

cij xi(�) � dj)

s.t. �j � 0
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Figure 4: Primal-dual relations when side-constraints are taken into account

First derivatives of dual function are given by primal variable constraint, in which primal
variables has been replaced by their expression in terms of the Lagrange multipliers:

@`

@�j
= dj � (

nX
i=1

cij xi(�)) (50)

Second derivatives of dual function, giving Hessian matrix, are easily available too:

Ajk =
@2`

@�j@�k
=

@

@�k

"
dj �

nX
i=1

cij xi(�)

#
=

nX
i=1

cij
@xi
@�k

(51)

Now the situation is much more complicated, because of the separate treatment of side
constraints, which introduces non smooth primal-dual relations. On one hand for free
variables, we have:

@xi
@�k

= cik if xi � xi � xi (52)

On the other hand, for �xed variables, it is obvious that

@xi
@�k

= 0 if xi = xi or xi = xi (53)

Therefore the Hessian matrix takes the form:

Ajk =
@2`

@�j@�k
= =

X
i2F

cij cik (54)

where set F is the set of index of free variables.

17



It turns out that the second derivatives of the dual function becomes discontinuous
each time that a free primal variable becomes �xed or conversely, since one changes the set
F of free variables in formula (54). From the primal dual relationships it is clear that the
dual space is partitioned in several regions separated by second-order discontinuity planes.
These planes are de�nes here by their equation:

(
mX
j=1

�j cij) = xi (
mX
j=1

�j cij) = xi (55)

Example quadratic problem with separable treatment of side constraints

min
x1 ; x2

x21 + x22

s.t. x1 + x2 � 1

1=4 � xi � 4

2.9 Dual solution scheme of MMA sub-problems

Anticipating a little bit on structural approximations, it is rather interesting to study the
principles of dual solutions applied to MMA approximated problems. After normalization,
the MMA sub-problem can be written in the following form:

min
x

nX
i=1

pi0
Uij � xi

+
nX
i=1

qi0
xi � Lij

s.t.
nX
i=1

pij
Uij � xi

+
nX
i=1

qij
xi � Lij

� dj j = 1 : : : m (56)

xi � xi � xi i = 1 : : : n

One must notice that the asymptotes may depend on both variable and constraint indices:
Uij and Lij.

In order to simplify the notations, we adopt the following notation: �0 = 1, so that
Lagrangian function is given by:

L(x; �) =

mX
j=0

�j (

nX
i=1

pij
Uij � xi

+

nX
i=1

qij
xi � Lij

� dj) (57)

The Lagragian problem is

min
xi � xi �xi

L(x; �) (58)
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Because of the separability property, the n-dimensional problem can be split into n one-
dimensional problems relative to each variable "i":

min
xi � xi �xi

Li(xi; �) =
mX
j=0

�j pij
Uij � xi

+
mX
j=0

�j qij
xi � Lij

(59)

For a pure MMA [38] approximation, the asymptotes are the same for each constraint
and they do not depend on the approximation index j: Uij = Ui and Lij = Lj. The
solution of this problem can be solved explicitly for each variable and gives rise to the
primal-dual relations. Optimality conditions of the Lagrangian problem are:Pm

j=0 �j pij

(Ui � xi)2
�
Pm

j=0 �j qij

(xi � Li)2
= 0 (60)

From this expression, one extracts the candidate optimal value of variable in terms of dual
variables:

x?i (�) =
Ui + �Li
� + 1

(61)

where

� =

sPm
j=0 �j pijPm
j=0 �j qij

(62)

For an approximation of the GMMA family [36], the primal-dual relationships are no
longer explicit since each asymptote depends now on both the primal variables (index
"i") and on the constraint (index "j"). As the Lagrangian problem no longer admits a
closed solution form, a Newton-Raphson scheme is adopted (as in Ref. [42]). However the
approximation is separable and n one-dimensional numerical minimizations are performed.
The iteration scheme for primal-dual relationships xi(�) is given by:

xi(�
+) = xi(�) � @Li=@xi

@2Li=@x2i
(63)

where

@Li
@xi

=

mX
j=0

�j pij
(Uij � xi)2

�
mX
j=0

�j qij
(xi � Lij)2

(64)

@2Li
@x2i

= 2
mX
j=0

�j pij
(Uij � xi)3

� 2
mX
j=0

�j qij
(xi � Lij)3

(65)
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For both MMA and GMMA schemes, we have to take care of side-constraint and we
consider three situations:

xi(�) = x?i if xi � x?i � xi; (66)

xi(�) = xi if x?i � xi; (67)

xi(�) = xi if x?i � xi: (68)

Values of primal variables in terms of Lagrange multipliers are then inserted in Lagrange
function to calculate dual function value. Gradient of dual function is also given by the
value of primal constraints.

When primal-dual relationships are not available in closed form, each evaluation re-
quires the solution of non linear problems, which needs an additional numeric e�ort. In
order to circumvent the problem, Fleury [20] suggested to break the solution of the convex
subproblem itself into a sequence of quadratic separable sub-subproblems. As explained
in the former section, these problems can be solved eÆciently by dual methods. So the
non-explicit character of primal-dual relationships is not a real obstacle in practice.

3 STRUCTURAL APPROXIMATIONS

3.1 Characteristics of approximations

When building approximation schemes, one pursues several (and sometimes antagonist)
goals. It is good to explicitly give them before reviewing the di�erent schemes.

The �rst constraint one has to keep in mind is that the solution of the generated sub-
problem must remain rigorous and the less computationally expensive. In order to be able
to resort to dual methods, one would like, at �rst, that the solution of the dual problem
is the same as the solution of primal sub-problem. Then the power of the dual method
holds if the computation e�ort to move to the dual space is small to save the bene�t of the
dual solution. To match these conditions, the sub-problems ( ~P ) and the related structural
approximations must be:

� Convex. The convexity of the sub-problems insures that there is a unique solution
and that the solution of the dual problem is the solution of the original problem.
In addition the dual problem is concave and eÆcient algorithms can exploit this
property.

� Separable. The separability is essential to arrive at relations between the primal
design variables and the Lagrange multipliers that are easy to compute. Primal
variables are given by an uncoupled system of equations in terms of the Lagrange
multipliers, which is possible to solve independently for each primal variable. Fur-
thermore for most of the approximation schemes, it is even possible to express the
solution in closed form. Separability is an essential property to reduces to a minimum
the computational e�ort with dual methods.
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Besides those two basic properties one would like that the procedure leads to a station-
ary solution within a minimum number of iterations without constraint violations. Obvi-
ously the number of structural analyses can be largely reduced when appropriate schemes
are used. To this end one would like that the structural approximations are:

� Precise in order to give the best �t to the real responses in the largest neighborhood
possible. Then the higher the quality of the approximation is the quicker is the
convergence speed to a solution.

� Conservative enough in order to generate a sequence of steadily improved iterations
which provide feasible solutions at any stage of the optimization process. Conserva-
tive approximations are obtained by increasing the value of the convexity terms in
order to reduce the size of the trust region and to avoid constraint violations. This
argument is generally antagonist with the precision property.

Furthermore the overall computational time to come to an optimum depends also upon
the numerical work that is necessary to build the approximation. To this end one wants
to look for

� A minimum computational e�ort to generate the approximation, but also to calculate
the the necessary information that is required to built it. For example computation
of true second order sensitivity is generally expensive so that it is generally avoided
and replaced by approximated second order information e.g. with Quasi-Newton
techniques. Another example is the cost of the solution of the primal-dual relation-
ships: Too complex approximation schemes are generally highly penalized because
they require elaborated and expensive numerical solutions of the primal-dual sys-
tem, which, in its turn, increases the numerical e�ort to formulate the dual problem.
Therefore, it comes that reducing the overall computational e�ort is also antagonist
to the accuracy and precision criteria, so that a trade o� has be made between the
two criteria.

This list is non extensive, one must also keep in mind that the approximation scheme and
the approximated sub-problems must be

� Robust, in order to be able to construct the approximation in an automatic and
reliable manner and in a lot of situations.

� Flexible, to be able to be used for various kinds of structural and geometric responses.

� Overall convergent in order to be able to end up in a optimized solution (may be a
local optimum) from any starting point design.

� : : :

The approximation schemes are generated through �rst or second order Taylor expan-
sion of the design function gj(x) around current design point x

k. The di�erent schemes are
expressed in terms of speci�c intermediate linearization variables, e.g. reciprocal variables
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1=xi. Because of the Taylor expansion procedure, the approximations are local schemes,
which means that the precision of the approximation is restricted to a neighborhood of the
current design point.

We are now going to review the most important schemes and see the improvements (or
drawbacks) that each one brings.

3.2 Linear approximation and sequential linear programming

When thinking about local approximation, the most natural and simple approximation
scheme is a the Taylor expansion around current design point x0 restricted to linear terms.
The linear approximation writes:

~gj(x) = gj(x
0) +

nX
i=1

@g(x0)

@xi
(xi � x0i ) (69)

The choice of linear approximation is natural when it corresponds to the nature of the
restriction. For example it is exact for the volume restriction when using SIMP material.
It is also mandatory when dealing with equality constraints.

When the linear approximation is applied to each restriction of the problem, one trans-
forms the original problem into a sequence of linear programming problems:

min
xi

g0(x
0) +rg0(x0)T (x� x0)

s.t. gj(x
0) +rgj(x0)T (x� x0) � 0 (70)

xi � xi � �xi

With the general formulation of linear programming, it is possible to treat a wide
spectrum of problems independently of the nature of the restrictions. But, may be the
most interesting advantage of sequential linear programming, comes from the fact that
the solution of this kind of sub-problems can be realized eÆciently with the help of lin-
ear programming algorithms like a SIMPLEX algorithm or a primal-dual interior point
method [29] which is very well adapted to very large scale problems.

However the sequential linear approximation strategy has also some drawbacks. Due
to the lack of convexity of the sub-problem, one can have some problem to stabilize the
convergence process. One can have some oscillations of the convergence or a lot of unfeasible
designs during iteration history. To overcome the diÆculty, one has to add some move-
limits to play the role of a 'trust region':

max(xi; x
0
i � �i) � xi � min(�xi; x

0
i + �i) (71)

For topology problems, we suggest an adaptive move-limit strategy which reduces the
design interval when the design variable oscillates and which opens it when the convergence
process is stable.

� For iteration k = 1 and 2, take an initial 10 percent move-limits

�i = 0:1( �xi � xi) (72)
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Figure 5: Linear approximation scheme applied to the strain energy in a two plies sym-
metric laminate subject to shear and torsion loads [7]

� For iterations k > 2, update move-limits according to the following rule:

�
(k+1)
i = 0:7�

(k+1)
i if �x

(k+1)
i �x

(k)
i < 0 (73)

�
(k+1)
i = 1:2�

(k+1)
i if �x

(k+1)
i �x

(k)
i � 0 (74)

When the original problem is very non-linear, it is sometimes necessary to adopt very close
move-limits, which reduces a lot the convergence speed. It is usual that 100 iterations may
be necessary to come to a stable solution in topology optimization.

3.3 Reciprocal variable expansion

As soon as the beginning of the seventies, Schmidt and his co-authors (see for example
Ref. [34]) showed that an approximation scheme in terms of reciprocal variables yi = 1=xi
is favorable to reduce the non-linearity of responses in sizing problems. Thus a good local
approximation is realized when expanding the responses gj(x) in terms of intermediate
variables yi = 1=xi to better capture the non-linear character of the function:

~gj(x) = gj (x
0) +

nX
i=1

�(x0i )2
@g(x0)

@xi
(
1

xi
� 1

x0i
) (75)

For a lot of structural applications, the reciprocal scheme (75) leads to successful results
with an impressive reduction of the number of stages to arrive at a stationary solution of the
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Figure 6: Reciprocal expansion scheme applied to the strain energy in a two plies symmetric
laminate subject to shear and torsion loads [7]

design problem. In fact the scheme is eÆcient when all the �rst derivatives of the function
are negative (like in determinate structures), since the approximation (75) has only positive
curvature terms and is conservative. However when the problem is highly non-linear or
when dealing with other kinds of problems like shape or composite problems, Fleury and
Braibant [24] observed that the derivatives can have mixed signs and that convergence
process is no more stable, because the approximation (75) is no longer conservative for the
variables which have positive derivatives.

3.4 Mixed linearization approximation: CONLIN

To overcome diÆculty of reciprocal variable and linear expansion, Fleury and Braibant [24]
expressed the idea to combine reciprocal expansion (when the derivative is negative) and
linear approximation (when the derivative has a positive value) in a single mixed approxi-
mation scheme:

~gj(x) = gj(x
0) +

X
+

@gj
@xi

(xi � x0i )�
X
�

(x0i )
2@gj
@xi

(
1

xi
� 1

x0i
) (76)

where
P

+ is the sum over all the terms for which the derivative is positive and
P

� is the
sum over all the terms for which the derivative is negative.

The scheme (76) is unconditionnally convex since all its second derivatives are positives,
that's why it is named CONLIN as Convex Linearization. Moreover, it was demonstrated
by Starnes and Haftka [37] that this scheme is the most conservative approximation that can
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Figure 7: CONLIN approximation of the strain energy in a two plies symmetric laminate
subject to shear and torsion loads [7]

be generated with linear and reciprocal variables. This convex character gives rise to the
conservative character of CONLIN, which means that the approximation (76) tends to lie
in the feasible domain of the constraint. It follows that the CONLIN method mostly tends
to generate feasible new solutions. In numerous applications, CONLIN technique leads to
a stable convergence and a feasible sequence of steadily improved designs. Convergence
speed is generally fast: 10 to 20 F.E. analyses are generally necessary to reach a stationary
solution in sizing optimization.

Another strength of CONLIN comes from the fact that it is very well suited to a use dual
optimizers, because of the convex and separable character of the approximated functions,
the sub-problem lends itself to an eÆcient solution procedure based on dual method and
second order maximization algorithm (see Fleury [18]).

The main drawback of CONLIN is related to the fact that the curvature of the approxi-
mation is �xed and there is no way for the user to modify it except by using tricky change of
design variables. This also sometimes introduces a bad �tting of the approximation to the
real function. So despite numerous successes, the mixed linearization leads sometimes to
too slow or unstable convergence histories as well. Famous example of divergence processes
were reported by Svanberg [38].

3.5 Method of Moving Asymptotes: MMA

To be able to adjust the curvature of the approximation and to have a better �tting to the
real function, one has to turn himself to the Method of Moving Asymptotes (MMA) from
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Figure 8: MMA approximation of the strain energy in a two plies symmetric laminate
subject to shear and torsion loads [7]

Svanberg [38] which extends the convex linearization scheme.

~gj(x) = r0j +

nX
i=1

pij
Ui � xi

+

nX
i=1

qij
xi � Li

(77)

with

pij = maxf0; (Ui � xi)
2 @gj
@xi

g

qij = maxf0;�(xi � Li)
2@gj
@xi

g (78)

and where r0j collects all zero order terms that are adjusted to �t to the constraint value

in x0.

Once again the scheme can regarded as a �rst order Taylor expansion in terms of
intermediate variables 1=(Ui�xi) or 1=(xi�Li) depending upon the sign of the derivatives.
Of course, one has the asymptotes values are such that Lki < xki < Uk

i .

The two sets of vertical asypmtotes Ui and Li generalize the vertical asymptotes intro-
duced in CONLIN with the change of variables yi = 1=xi. In fact the CONLIN approxima-
tion can be recovered from the general statement by assuming Li = 0 for the lower bound
and Ui !1 for the lower bound.

The two sets of asymptotes also play a role of move-limits. This analysis has been
even more reinforced with the recent work that has been done in primal-dual interior
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Figure 9: MMA approximation of the strain energy in a two plies symmetric laminate
subject to shear and torsion loads [7]

point methods in which side-constraints (here lower bound) are taken into account through
barrier functions of the type [6, 28]:

ln(xi � xi) or
1

xi � xi
(79)

To adjust the MMA approximation, one has to play with the parameters of the approx-
imation i.e. the position of the vertical asymptotes. One could calculate that the second
derivatives (and the convexity as well) increase when the asymptotes are pushed closer to
the design point. And conversely the convexity of the approximation is reduced when they
are moved away from the design point xk.

One diÆculty of the method comes from the fact that the automatic choice of these
curvature parameters remains diÆcult. Svanberg [38] proposed a heuristic strategy for
asymptotes upddate based on the design variable oscillations. For the iterations k = 1 and
2, the default values of the asymptotes are adopted:

Lki = xki � s0( �xi � xi)

Uk
i = xki + s0( �xi � xi) (80)

with s0 = 0:5 is suggested by Svanberg. Then asymptotes are updated in the following
ways.

For k > 2, the update scheme is the following. When convergence process is smooth
(xk�2i � xk�1i ):(xk�1i � xki ) � 0, convexity can be reduced not to slow down convergence
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rate. So asymptotes can be moved away from design point.

Lki = xki � s1(x
k�1
i � Lk�1i )

Uk
i = xki + s1(U

k�1
i � xk�1i ) (81)

with s1 less than 1 and generally chosen as 1:2.
While when convergence history oscillates (xk�2i � xk�1i ):(xk�1i � xki ) < 0, one has

to close the asymptotes towards the design point to increase convexity. So one gets the
following update rules

Lki = xki � (xk�1i � Lk�1i )=s2

Uk
i = xki + (Uk�1

i � xk�1i )=s2 (82)

with s2 greater than 1 and generally chosen as s1 or
p
s1

One may also notice that Zhang and Fleury [41] proposed an alternative strategy based
on the �tting the approximation to the previous function value.

3.6 Globally Convergent Method of Moving Asymptotes: GCMMA

As one can remark in �gures 8 and 9 that MMA (but also COLNLIN) is made of sum of
monotonous functions. When one is faced to non-monotonous problems (which is often the
case with composite structures for example), it is mandatory to restrict the design variable
motion in one direction. Therefore, as suggested by Svanberg [38], a move-limit strategy
is generally adopted in combination with MMA.

max(xi; 0:9Lj + 0:1x0i ) � xi � min(�xi; 0:1x
0
i + 0:9Ui) (83)

More recently, Svanberg [39] proposed a new extension of MMA method which uses
simultaneously both asymptotes in order to create a non monotonous approximation func-
tion. The general statement of the approximation is similar to MMA formula:

~gj(x) = r0j +

nX
i=1

pkij
Ui � xi

+

nX
i=1

qkij
xi � Li

(84)

but coeÆcients pkij and qkij are both non zero in general. They are as chosen as follows:

pkij = (Uk
i � xki )

2

 
maxf0; @gj(x

k)

@xi
g +

�kj
2
(Uk

i � Lki )

!
(85)

qkij = (xki � Lki )
2

 
maxf0;�@gj(x

k)

@xi
g +

�kj
2
(Uk

i � Lki )

!
(86)

where �kj are strictly positive parameters (to insure the convexity of the approximation)

which are updated together with the asymptotes Lki and U
k
i . This is precisely the presence
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Figure 10: GCMMA approximation of the strain energy in a two plies symmetric laminate
subject to shear and torsion loads [7]

of the complementary term in �kj that allows the approximation to be non-monotonous by

using in the same time the two asymptotes Lki and Uk
i .

Mobile asymptotes are updated with the same rule as in MMA (see formula (80-82)).
The additional parameters �kj are chosen as follows. For the two �rst iteration (k = 1), one
choose

�1j = " 8 j 2 f0; 1 : : : ;mg 0 < "� 1 (87)

In the later iterations (k � 2), the parameters �ki are updated according to

�kj = 2 �k�1j if ~gk�1j (xk) < gj(x
k)

�kj = �k�1j if ~gk�1j (xk) � gj(x
k) (88)

Further (in order to prove the convergence!), if

~gk�1j (xk) � gj(x
k) 8 j 2 f0; 1 : : : ;mg

the asymptotes should now instead be updated as

Lki = xki � (xk�1i � Lk�1i )

Uk
i = xki + (Uk�1

i � xk�1i ) (89)

Even though that for this scheme, one can prove the globally convergent character of the
method (i.e. it converges to a stationary point from any starting point; which not means
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that it converges to the global optimum of the problem!), the practical experience is that,
in most cases, it converges more slowly than the original MMA (on problems where MMA
does converge). The reason for this is that since the parameters �ki are increased, and never
decreased, the approximations become increasingly conservative. This may eventually lead
to very small steps in the iteration process.

3.7 Example

To illustrate the di�erence between the various approximation schemes, we now plot the
contours g(x) = 0 of the real and approximated constraints for a simple analytic example.
The function under study is

g(x) = 5 x2 � x21

First order derivatives of function g are:

@g

@x1
= �2 x1 @g

@x2
= 5

The current approximation point is (x01; x
0
2) = (4; 4) where the function and derivatives

values are:

g(x0) = 4 rg(x0) = [�8 ; 5]T

Reciprocal scheme is not conservative and lies in the unfeasible region of the true
constraint. Linear, CONLIN, MMA and GCMMA are gradually more conservative and lie
in the feasible part of the design space.

Remark that as CONLIN, MMA, etc. are monotonous approximation, so that the
contours are open curves, while GCMMA which is a non monotonous approximation leads
to a closed contour curve.

3.8 Second order schemes

An alternative strategy to remedy to CONLIN's problems consists in improving the qual-
ity of the approximation and in introducing second order derivative information. Smaoui,
Fleury and Schmit [36] proposed a generalized MMA in which the asymptotes are automat-
ically selected to match the second order derivatives. A bit later Fleury [19] generalized the
use of second order derivatives to several convex other approximations (like the quadratic
diagonal scheme and the expansion in terms of a power of the design variables) and showed
there is a big pay-o� related to the use of the second order information in structural ap-
proximations.

3.8.1 The Generalized Method of Moving Asymptotes (GMMA)

The approximation of the generalized method of moving asymptotes can be written in the
following form:

~g(x0) = c0 +

nX
i=1

ai
xi � bi

(90)
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Figure 11: Comparison between the di�erent approximation schemes for the function
g(x) = 5 x2 � x21 at point (x1; x2) = (4; 4)

As the original MMA [38], this approximation can easily match the function value and
its �rst derivatives at current design point x0. If the second order information is available,
Smaoui et al. [36] showed that the asymptotes could be selected automatically too. The
parameters of the expansion are given by:

ai = �(x0i � bi)
2 @g(x0)

@xi

bi = x0i + 2
@g(x0)

@xi
=max(�;

@2g(x0)

@x2i
) 0 < �� 1 (91)

while the parameter c0 is de�ned to meet the constraint value at the design point. The small
positive number � guarantees the convexity of the approximation. This approximation is a
generalization of the pure Method of Moving Asymptotes of [38], since, here, each constraint
has got its own set of asymptotes.

3.8.2 Quadratic Separable Approximations

The quadratic approximation is the second order Taylor's expansion of the given structural
response. Nevertheless, the full second order expansion introduces coupling terms and
the approximation is no more separable. Furthermore, the full second order sensitivity
analysis can be expensive for structural problems. So Fleury [19] proposed to neglect the
o�-diagonal second order terms and to admit that structural constraints are suÆciently
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well approximated by the following local expansion:

~g(x) = g(x0) +
nX
i=1

@g(x0)

@xi
(xi � x0i ) +

1

2

nX
i=1

(
@2g(x0)

@x2i
+ Æii)(xi � x0i )

2
(92)

The additional terms Æii are generally added in order to reinforce the convexity of the
separable approximation and to play the role of 'move limits' in establishing a trust region
around the design point. For example, the penalty terms Æii can be estimated so that the
unconstrained optimum is kept within a given distance of the expansion point.

jx�i � x0i j = j @g
@xi

=(
@2g

@x2i
+ Æii)j < � x0i (93)

3.8.3 Approximation procedure of diagonal second derivatives

A study [15, 16] based on the theory of Quasi-Newton updates preserving the diagonal
structure has shown that the best approximation of second order diagonal terms is simply
given by:

Bii '
@g(xk)

@xi
� @g(xk�1)

@xi
xki � xk�1i

(94)

This rather intuitive result consists in "making �nite di�erences between the computed
�rst derivatives in two successive iteration points and in ignoring the cross derivatives".

This theoretical result was adapted to the characteristics of structural optimization
problems to yield quickly convergent estimates of the Hessian. This adaptation relies on
the key role of the reciprocal design variables to reduce the non-linearity of the structural
responses. The Hessian is updated in the space of reciprocal design variables and then
converted into curvatures in terms of the direct variables to be used in the approximation.
The initial guess of the Hessian is also very important. Starting in the reciprocal design
space from a diagonal matrix of small terms restores the curvatures of CONLIN which is
generally a good starting point.

As in Ref. [15, 16] this approximate second order information can be introduced in
two high quality approximations: the second order Method of Moving Asymptotes and
the quadratic separable approximation. The performances of this procedure are very close
from the results obtained while using the same approximations with analytic second order
derivatives [19]. In every cases these performances are at least as good as the best results
with MMA [38] or CONLIN [24].

3.8.4 Comparison of approximation in topology optimization [10]

First order convex approximations

In Refs. [10, 11], we tested �rst order approximations in solving material distribution
problems and we observed good results. These approximations give rise to quick descent
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rate during the �rst 10 iterations, but the convergence is slower around the optimum, so
that 20 to 40 iterations more are generally necessary to arrive to a stationary solution.
Nevertheless, if these performances (in terms of the number of iterations) are compared to
results obtained with standard implementations of optimality criteria (like in Ref. [3, 5]),
CONLIN or MMA give equal or better performances. Among the approximations, the
expansion in terms of power p of the design variables is often too conservative and the
convergence rate is the slowest. Performance of CONLIN is generally very satisfactory.
Due to the weaker curvatures of CONLIN and MMA in the �rst iterations, it is worth
using move-limits to have a smooth convergence history.

From our experiences, the CONLIN (Fleury and Braibant [24]) approximations give
rise to good results in topology design. For the compliances that are self-adjoint, all the
derivatives are negative and CONLIN restores the reciprocal design variables expansion
that is well known to reduce the non-linearity of the structural responses. But convex-
ity and conservativity properties of the approximation in CONLIN are important when
treating eigenfrequencies or constraints whose �rst derivatives have mixed signs. The main
disadvantage of CONLIN is that the approximations introduce �xed curvatures, so that
the approximation may be too much or too little conservative. This can give rise to a slow
or unstable convergence towards the optimum. To remedy this, we select the MMA [38]
approximation scheme which generalises and improves the CONLIN scheme by introducing
two sets of asymptotes. The choice of the moving asymptotes provides the way to modify
the curvature and to �t better to the characteristics of the problem.

Because of the 
exibility introduced by the moving asymptotes, MMA �ts better to
the convexity of the problem and MMA is often a bit quicker than CONLIN. It was also
observed that for very diÆcult problems, MMA was more stable than CONLIN. Therefore
it is generally chosen as default algorithm.

Nevertheless, we can conclude that both CONLIN and MMA lead to satisfactory results
for topology design and improve often greatly the performance of the solution procedure. In
many problems we observed that a solution is often achieved in 30 to 50 iterations depending
on the diÆculty of the problem and the precision of the stopping criterion. One strong
advantage of CONLIN and MMA arises from the very reliable dual solvers that are used to
solve the associated convex sub-problems. On another hand, one major drawback of �rst
order approximations is that we can observe a deceleration of the progression towards the
optimum once the algorithm arrives in the neighbourhood of the optimum. To accelerate
the convergence rate in the �nal stage, one needs better approximations based on curvature
information (Fleury [19]).

We should also brie
y discuss the selection of a termination criteria. We prefer not
using termination criteria based on limited improvement of the objective function since the
optimum is very 
at and the value of the objective function decreases very slowly during
more than half of the iterations. So, such a method will lead termination of the optimization
process at a too early stage. When all is said and done, one looks for the optimal material
distribution, so we think that it is better to adopt a termination criteria based on the design
variable motion. This can be based on any norm of the di�erence of the design variable
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vectors between two iterations. We often use arithmetic mean modi�cation (order 1 norm)
or the maximum modi�cation (in�nite norm). As the problem under consideration is a
constrained optimization problem, one can also use Kuhn-Tucker conditions. Satisfaction
of any one of these last termination criteria avoids premature stopping.

Second order convex approximations [11]

Second order are high quality approximations that are indeed more precise and that
lead to faster convergence rates. Nevertheless, second order sensitivity is very onerous to
compute and to store so that the overall overall cost of the optimization run with second
order sensitivity can be similar to the cost of an optimization run that would be made with
�rst order approximations even if the number of iteration is greater [30]. When the size
of the problem increases, computing and storing second order derivatives becomes quickly
cumbersome and the problem becomes impossible to manage.

To be able to use second order approximation schemes with large scale optimization
problems, we developed a new procedure to generate an estimation of the curvature infor-
mation with a small computation cost [15, 16]. As separable approximations needs only
diagonal second derivatives, the idea is to built an estimation of the curvature information
with a quasi-Newton update able to preserve diagonal structure of the Hessian estimates.
This update scheme is derived form the general theory of quasi-Newton update with sparse
Hessian estimates made by Thapa [40]. The diagonal version of the BFGS update [15, 16]
that we implemented is very un-expensive even for large scale problems since it introduces
only vectors manipulations. In [10], it was observed that for a given topology problem,
the time spent in the diagonal BFGS update is only 3 % of the time spent in the opti-
mizer CONLIN [18, 20] and only 0.01 % of the time needed for sensitivity analysis with a
commercial �nite element package.

The estimated second order information is introduced into two well known second order
approximations. The �rst one is a second order version of MMA proposed by Smaoui et
al. [36]. The second approximation is the separable quadratic approximation suggested by
Fleury [19]. Combining diagonal BFGS update with both these approximations gives very
interesting results that leads to important savings in terms of number of iterations and
of computation time. This conclusion can be explained as follow. Firstly, the estimation
of the curvature improves greatly the quality of the approximation with only the help of
the accumulated �rst order information. Secondly, instead of ignoring the second order
coupling terms, diagonal BFGS provides a way to take them into account by correction
terms on the diagonal coming from the diagonal update. Due to our initial guess of the
Hessian, one can observe, in the �rst iterations, a convergence history that is very similar
to �rst order approximations. But after some iterations, the update procedure improves
the estimation of the Hessian and one can see a real advantage in the convergence speed.
Around an accumulation point satisfying the optimality conditions, we could observe a
convergence speed superior to �rst order methods, sometimes closed from super-linear
behaviour.

As a conclusion, second order approximations can advantageously be used for large scale
optimization problems like topology design. Starting from an initial choice of curvatures
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Figure 12: Short cantilever beam problem

which is close to the reciprocal design variable expansion results in similar characteristics as
�rst order approximations, during the �rst iterations. This choice generally yields a good
descent rate of the objective function in the beginning. Then, since the Hessian estimate
is improved and the approximation is enriched by this curvature information, it leads to a
better convergence rate during �nal convergence and the number of iterations to reach a
stationary solution is reduced.

Attention must nevertheless be paid to the well-known fact that second order algo-
rithms are more sensitive to local optima. This fact was observed also with our procedure
and particularly with the quadratic separable approximation. This drawback can be at-
tenuated by adding move-limits or by adding additional convex terms in the quadratic
approximation.

3.9 Topological optimization of short cantilever beam

Finally we can illustrate the application of four approximations -CONLIN, MMA, MMA
second order with diagonal BFGS (DQNMMA), and quadratic separable approximation
with diagonal BFGS (DQNQUA)-, in the context of a topology optimization problem,
the short cantilever beam problem whose geometry of the problem is given at �gure 12.
This design is a classical bench-mark of topology optimization. For the sake of simplicity,
the material law is simply given by a cubic relation between the rigidity and the relative
density [4]: E = �3E0 and � = ��0. The Poisson's ratio and the Young's modules of
the solid are: �0 = 0:3 and E0 = 100 GPa. The compliance under the given load case
is minimized while the volume is bounded to 37:5% of the volume of the design domain.
The design domain is discretized by a regular mesh of 1040 �nite elements of degree 2.
The �nite element analysis and the sensitivity analysis are performed with the SAMCEF
package.

The problem is solved with the four di�erent approximations for compliance (the volume
is linearized). Since all the �rst derivatives of compliance are negative, CONLIN and
the reciprocal variables expansion are the same. We also implemented a MMA scheme
similar to Svanberg's one. Then, we use the high quality approximations DQNMMA and
DQNQUA.
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Figure 13: Distribution of density (CONLIN)

Figure 14: Compliance history

Histories of compliance are given at �gure 14. At �rst glance, the di�erent convergence
curves are very similar and the di�erent algorithms tend towards local optima with nearly
the same compliances. Nevertheless, when material distributions are visualized, the op-
timal distributions reveal a very similar topology, except in the quadratic approximation
(Figure 13 presents the material distribution obtained with CONLIN). Thus several op-
tima exist when intermediate densities are highly penalized and attention must be paid to
local con�gurations. Also, second order approximations are partly more sensitive to local
optima.

First order approximations give smooth and monotone history curves. At the beginning,
the descent rate is good but, after more or less 10 iterations, compliance reduction is
seriously slowed down when close to the optimum. Progression becomes much slower.
One can note that the modulus of the KKT test (�gure 15) and the mean modi�cation
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Figure 15: History of modulus of KKT vector

of the design variables between two iterations (�gure 16) diminish slowly, even with small
oscillations.

Second order approximations also results in convergence curves with a very good descent
rate. The progression towards the optimum is not handicapped too much by the non
monotone behaviour of the �rst iterations (iterations 3 and 4). That fact may be due to an
uncertain value of the estimation of the curvatures by the diagonal BFGS. After this phase
which is necessary to stabilize the estimations of the curvatures, second order information
gives rise to a very good descent rate. When in the 
at part of the compliance curve,
second order information preserves a good convergence speed and continues to accelerate
the progression towards a stationary solution. This can be clearly noted on the mean
modi�cations of the design variables or on the KKT modulus. Stationarity is reached much
faster with second order schemes and diagonal BFGS than with �rst order approximations.
As predicted by Thapa's theory [40], we recover in fact the asymptotic superlinear descent
rate of quasi-Newton methods in the neighbourhood of the optimum. This characteristic
saves a high number of iterations. The quadratic scheme and the MMA second order
method come to stationarity in 30 to 40 iterations while CONLIN and MMA needs more
than 40 iterations to satisfy a weaker termination criteria.

Finally one can also compare the two proposed termination criteria: the modulus of
the Lagrangian function (in �gure 15) and the mean modi�cation of the design variables
between two iterations (in �gure 16). One can observe that both have a parallel evolution
and they are in perfect correlation. As predicted by the theory they give an equivalent
information and they be both used to predict convergence in topology optimization prob-
lems.

With the DQNMMA and DQNQUA approximations, the objective function is com-
pletely stationary after 26 iterations and 40 iterations. At this moment, no design modi-
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Figure 16: History of the mean motion of the design variables between two successive
iterations

�cations can be observed, whereas the convergence of the other �rst order schemes is not
achieved yet. CONLIN and MMA's �nal convergence rates are much slower.

4 PERIMETER APPROXIMATION [11]

Perimeter constraint has a major place in topology design, because it is a very interesting
alternative to optimal realxation using optimal microstructures as in the homogenization
method [1, 5]. In engineering applications, perimeter control also seems further attractive
than the rigorous homogenization method because it allows to use penalization of inter-
mediate densities and to generate clear density distributions with well separated voids and
solids zones, so that an unambiguous macroscopic topology often appear. Ambrosio and
Buttazzo [2] demonstrated that the design problem with perimeter penalization is well-
posed. Application of perimeter control to topology design of structures was presented by
Haber et al. [25]. The work presented here aims at remeding some diÆculties that occur in
the numerical implementations of the perimeter control. We focus on providing an eÆcient
numerical strategy to take perimeter constraint into account in order to use perimeter con-
trol as a real practical design tool. The perimeter is a rather diÆcult constraint to satisfy
and to approximate, as it will be seen.

We based our numerical experiences on power law models (also called SIMP materials)
to provide in the same time a continuous approximation of the design distribution problem
as well as a penalization of the intermediate densities. SIMP material is also easy to
implement in any industrial code. Finally, SIMP material introduces only one variable per
element, so that the size of the problem is kept at a minimum.

Although in the original work of Haber et al. [25] the perimeter control was treated with
a interior penalty function, we propose to generalize the solution by solving the problem
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Figure 17: Example of a perimeter measure and its quadratic approximation

as a constrained problem in which perimeter is one of the inequality constraints. If one
wants to control the perimeter by prescribing a target value with a penalization, one can
use a relaxation technique and introduce an additional variable Æ, which is quadratically
penalized in the objective function (the pds factor is a tuning parameter to control the
relative weight of the penalization compared to the magnitude of the objective function).

min
� � � � 1

1 � Æ � 2

fT u + pds Æ2

s.t. V � �V (95)

P � �P + (Æ � 1) �P

�P is an allowable maximum violation of the target bound �P give by the user. Standard
versions of solvers like CONLIN [22] or MMA [38] are able to handle the solution of this
kind of optimization problems with relaxation.

When the density varies continuously, Haber, et al. [25] propose to replace the geomet-
rical measure of the perimeter by the total variation of the density �. For a density �eld
which is element by element constant, we can write:

P =
X
k

lk

�q
<�>2

k + �2 � �

�
(96)

where <�>k is the jump of material density trough the element interface k of length
lk. The parameter � is a small positive number to guarantee the di�erentiability of the
measure. Values of � are generally taken between 10�2 to 10�4.

Figure 17 sketches the perimeter measure of a square element of density � surrounded by
four elements of density �1, �2, �3, and �4. Perimeter is nearly a piecewise linear function
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even if it is globally non monotonous. It turns out that perimeter constraint is not easy to
approximate with classical schemes. Monotonous approximations like CONLIN or MMA
give rise to oscillatory behaviours. Furthermore, the perimeter is globally non linear and
there are important couplings between neighboring �nite element (F.E.) densities. Thus,
the trust region of separable approximations is narrow.

Nevertheless, in order to treat problems with a large number of variables and to use dual
solvers, we need a convex and separable approximation. From our numerical experience,
good results are expected with a quadratic separable approximation of the general form:

~P (�) = P (�0) +

nX
i=1

@P

@�i
(�i � �0i ) +

1

2

nX
i=1

ai (�i � �0i )
2

(97)

The main problem is now to choose the second order terms ai carefully. Their values must
be a compromise between precision and conservativity. Too small values of ai would imply
important constraint violations while too large values of these second order terms would
lead to a freeze the motion of the variables. On one hand, by selecting ai, one will try
to �t the true shape of the constraint while on the other hand, these coeÆcients will play
the role of move-limits that restrict the validity of the approximation. Also, the analytic
second order derivatives are not useful since they are zero, except in angular points where
they are very large (or do not exist). So the choice of the arti�cial curvatures is based on
a heuristic rule, which is explained in the next section.

4.1 A heuristic estimation of curvatures for perimeter approximation

In the following, we develop a heuristic estimation of curvatures for approximating the
perimeter when there is one density variable �i per element as it is for SIMP materials.
These estimates of the curvatures are based on a bound over individual contributions of
each element. According to the quadratic approximation, the contribution of element "i"
to global perimeter is:

~Pi(�) = Pi(�
0
i ) +

@P

@�i
(�i � �0i ) +

1

2
ai (�i � �0i )

2
(98)

Pi(�
0
i ) is the contribution of element "i" to the perimeter with the current distribution of

density. This contribution of element "i" is maximum when the density jump across the
element interfaces becomes equal to unity. Suppose now that this situation happens at
point �?i . Then one can write the second order coeÆcients in term of the new parameter :

ai = 2

P
k 2Ki

lk (
p
1 + �2 �

q
j�0i � �0kj2 + �2) � @P

@�i
(�?i � �0i )

(�?i � �0i )
2

(99)

where the sum is realized over the set Ki of the interfaces of element "i".

The question is now to �nd the point �?i where this situation could probably happen.
If the separability hypothesis were true, the point �?i could be chosen at the boundary of
the admissible set of �i, that is when �i touch its side-constraints. But, because of the
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neglected coupling e�ects, which lead to ignore the modi�cation of neighboring element
densities, this situation happens sooner, so that this choice leads to approximations that
are not conservative enough. Instead, we propose to play with the point �?i as a move limit.
From our numerical experience, we propose to take:

�?i = �0i � � (�i � �
i
) with � 2 [0:33; 0:44] (100)

This choice prevents an oscillation of the neighboring design variables. The proposed
approximation as applied is illustrated in �gure 17.

4.2 An internal loop procedure for perimeter approximation

Even if the approximation procedure of the perimeter is eÆcient, the perimeter constraint
remains diÆcult to approximate and we generally note that the number of iterations in-
creases drastically when a perimeter constraint is considered. It often takes more than
100 iterations. This e�ect can be imparted to the fact that we need to take a convex
approximation with a high curvature to have a suÆciently conservative approximation.
Unfortunately, this has the drawback of slowing down the optimization process. On the
other hand, perimeter constraint is a geometrical constraint, and, thus, contrary to struc-
tural responses, perimeter is easy and inexpensive to evaluate.

The idea is thus to create an internal loop over the optimization algorithm with several
updates of geometrical constraints as the perimeter. The strategy is given at �gure 18.
The outer loop is usual: it includes the �nite element analysis, the sensitivity analysis
and the optimization procedure. The optimization procedure encloses an inner loop that is
repeated with updated approximations of the perimeter until the perimeter approximations
coincide with its real calculated value within a suÆciently high precision at the proposed
new optimum. Since structural constraints are expensive to evaluate (it requires one �nite
element run and a sensitivity analysis) and since they are suÆciently well approximated by
high quality schemes, the structural approximations are kept unchanged during this inner
loop. As the inner loop is repeated until the perimeter has a given precision, the perimeter
constraint does not slow the optimization process and we noted a spectacular acceleration
to reach optimal solutions. The number of iterations is often divided by a factor 3 or 4.

Let denote by l the sub-iteration index. To implement the update procedure of the ap-
proximations for geometrical constraints, we need writing, around the reference design point
x0 where the structural approximations are expressed, an approximation of the perimeter
that matches the true perimeter value and its derivatives in an other sub-iteration point
xl. This is possible by de�ning �ctitious parameters (that are denoted with a 'check').

For a quadratic approximation given in (92), one can de�ne the dummy parameters:

�ai = aii(x
l) �bi =

@g(xl)

@xi
+ aii (x

0
i � xli)

�g(x0) = g(xl) +

nX
i=1

@g(xl)

@xi
(x0i � xli) +

1

2

nX
i=1

ai (xi � xli)
2
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Figure 18: Optimization process with 2 loops
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so that the approximation is exact in xl, but it is written around x0.

The quality of the approximation curvatures is also improved with the information
collected during the inner loop. If the variable "i" tends to oscillate, the second order
terms ai can be multiplied by a given factor to increase the conservativity. If the process
is monotone in this variable, the convexity is decreased. We adopt a similar procedure to
the update strategy of the moving asymptotes of Svanberg [38].

For the two �rst iterations l = 1 and 2, the default heuristic quadratic coeÆcients
ai (99) are adopted. After two iterations, if the process oscillates, one has to increase the
curvature of the approximation :

if (xl�1i � xl�2i )(xli � xl�1i ) � 0 ali = al�1i � s1 s1 > 1 (101)

If the process is stable and monotone, the approximation curvature is decreased:

if (xl�1i � xl�2i )(xli � xl�1i ) > 0 ali = al�1i =s2 s2 > 1 (102)

Parameter s2 is generally chosen equal to s1 or better to
p
s1 to stabilize the process.

The use of an accurate approximation of perimeter constraints combined with the
inner loop strategy proved its great eÆciency. This procedure generally leads to optimal
distributions in less than 50 iterations and the optimization process is stable and reliable.

5 MANAGING STRESS CONSTRAINTS

5.1 Relaxation of stress constraint

5.1.1 Singularity of stress constraint

When including stress constraints in topology optimization, a major diÆculty comes from
the so-called 'singularity phenomenon' (see for example Kirch [27]). It results in the im-
possibility for the optimization algorithms to create or to remove holes in the material
distribution during the optimization process. The physics of the phenomenon is now un-
derstood [8]: Low density regions sometimes remain highly strained. When the density
decreases to zero in these regions, the limit of the stress state in the microstructure tends
to a non-zero value and remains even higher than the stress limit. Therefore, the opti-
mization procedure cannot remove the material in this region. The paradox is, that if
the material is totally removed, the stress constraint would obviously not be active. This
discontinuity in the stress constraint at zero density is the origin of the problem.

As remarked by Rozvany and Birker [33], these discontinuities create complex design
domains: They can have several non connected parts and they often include regions of zero
measure i.e. parts whose dimensionality is smaller than the dimensionality of the design
space.

From a mathematical point of view, the 'singularity' phenomenon for topology design
with stress constraints should rather be called a 'degeneracy' or a 'irregularity' of the
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Figure 19: 3-bar truss problem

design space since the key e�ect is that the design space contains degenerated appendices
where the quali�cation of constraints (the Slater condition) is not veri�ed. This means that
classical optimization algorithms based on Kuhn-Tucker conditions are unable to reach the
optima that are located in these regions. It follows that the optimization algorithm is
not able to remove totally some low density regions and then to reach the true optimal
topologies.

Singularity phenomenon is illustrated by a very simple truss example reported by
Hoback [26] (see �gure 19). The problem is a 3-bar-truss. Cross sections of bars num-
ber 2 and 3 are the same. The weight is minimized while the stress in the three bars are
kept below a prescribed stress limit of 20 N=m2. Design problem is given as:

min
A1; A2�0

WT = � A1 + A2

s.t. g1 = A1 +A2=3� 0:5 � 0

g2 = A1 +A2=3� 0:236 � 0

g3 = A1 +A2=3� 0:167 � 0

where � is a cost parameter. The design space is presented in �gure 20. Topology opti-
mization of the truss is a performed by allowing zero cross sections. However for zero cross
section the stress constraint has not to be considered anymore and there is a discontinuity
of the restriction. The stress constraint contours are stopped along the coordinate axes
and the piece of line from 'B' to 'C' is still part of the feasible domain. This linear part is
a degenerated part of the design space. Obviously optimum is located in point 'C', which
corresponds to remove bar A1. However mathematical programming algorithms cannot
reach point 'C' and get stocked in 'B' because of the degenerated nature of the appendix
part running form 'B' to 'C'.

5.1.2 �-relaxation technique

To circumvent the diÆculty, Cheng and Guo [9] applied a perturbation method, called
the �-relaxation technique. The strategy replaces the solution of the 'singular' problem
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Figure 20: Design space of the 3-bar truss problem

with a sequence of perturbated non-singular problems which can be solved with classical
optimization algorithms.

At �rst, one has to reformulate the stress constraint. If k�k is a relevant stress criterion
and if � is the density parameter, then the stress constraints in their original form are

k�eqk � �l if � > 0 (103)

One has to eliminate the condition � > 0 and to normalize the constraint, which gives the
equivalent formulation:

� ( k�eqk=�l � 1 ) � 0 (104)

For bars in a truss, this is equivalent to considering forces instead of stresses, as proposed
in Ref. [27] or to the adopting a quality function to replace the stress constraints like in
Ref. [8]. However, this reformulation does not change the quali�cation of the constraints
and it does not remove the algorithmic problems.

To circumvent the singularity of the design space, one has to use a perturbation of the
stress constraints by using the �-relaxation (in the sense of mathematical programming)
approach proposed initially by Cheng and Guo [9] for truss topology. Given an additional
parameter �, the original stress constraints are replaced by the following relaxed stress
constraints and side constraints:

� ( k�eqk=�l � 1 ) � �

�2 � � (105)

45



Of course for � = 0, this formulation renders the original problem with stress constraints.
But for any � > 0, the �-relaxed problem with the constraints (105) is characterized by
a design space W� that is not any longer degenerate, i.e. the optima are now placed
in regions of the design space with non zero measure. It is thus possible to reach the
optimum, denoted by ��� , with classic optimization algorithms based on Karush-Kuhn-
Tucker conditions. The mathematical rigor of the method stems from the possibility to
prove (see Cheng and Guo [9]) that this perturbation this relaxation creates continuous
point-to-set maps between the parameter � and the relaxed design domains as well as to
their optimal solutions. This means that when �! 0, the sequence of domains fW�g and
their optimal solutions f���g converge continuously towards the original degenerate problem
and its associated optimal solution. Nevertheless, the solution of every relaxed problem is
regular and can be found with classical mathematical programming algorithms. Then the
idea is to solve numerically a sequence of perturbated problems with decreasing values of
� to come to the singular solution.

A recent study [14] showed the classical implementation (105) of the �-relaxation tech-
nique, which initially was developed for truss topology optimization problems, is not totally
satisfactory for continuum-type topology optimization problems. Indeed with continuum
topology, the problem is the following. The in
uence of the perturbation disappears only
for � = 1, whereas the perturbation has still a non negligible e�ect on the stress limit
for solid material (� = 1). (The situation is illustrated in Fig. 21). Therefore, a feasible
design for a given � is no longer feasible for a smaller value of �0 < �. This slows down the
convergence of the optimization procedure, because the optimal and feasible solution for a
problem with parameter � violates some stress constraints when � is reduced. To overcome
the problem, one can adopt the following modi�ed set of perturbated constraints:

k�eqk
�l

� �

�
+ � � 1

�2 � � (106)

This new relaxation function is similar to the original one (105) in the sense that the
mapping between � and the perturbated problems and their optimal solutions are still
continuous. However, one can easily see that the perturbation vanishes for � = 1 such that
the solution remains feasible when � is reduced.

On the basis of Fig. 21, one can interpret the physical mechanism of the relaxation by
rewriting this constraint. If � > 0 the perturbated stress constraint can be rewritten as

k�eqk � �l (1� �+ �=�) (107)

The left hand side of this constraint gives a clear physical understanding of the relaxation
technique. The permissible stress is increased for low densities as illustrated in Fig. 21.
This opens the degenerated parts of the design space and this gives the possibility to create
or remove holes without violating the stress constraint. It should be mentioned that the
�gure suggests there is an equivalence between the �-relaxation technique, which is a rig-
orous mathematical programming technique, and an intuitive idea that was independently
suggested by Rozvany [32].
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Figure 21: Relaxed stress limit as a function of the density

5.1.3 Algorithm for � parameter reduction

Thus the solution procedure consists in solving a sequence of optimization problems relative
to decreasing � parameters. One uses a continuation approach similar to what is done with
barrier and penalty functions. In our implementation the process is driven by the minimum
density �min = �2. We typically decrease progressively the minimum density from 10�1 to
10�4 or 10�6. The choice of a quite large initial minimum density is necessary to open the
degenerated parts of the design domain and to be able to �nd the 'singular' optima from
most of the initial starting points of the design space.

The reduction of the the perturbation parameter � is ruled by an automatic and system-
atic strategy. Based on numerical experience, the highly perturbated problems need not
to be solved with a high precision. The perturbation parameter can be reduced as soon
as the solution of the optimization problem satis�es a mild convergence criterion. The
convergence criterion is based on the Euclidean norm of the gradient of the Lagrangian
function (where only components that correspond to free variables are considered). If the
objective function g0(x) and the constraint gj(x) are normalized with a target value of
the objective function g0 and the constraint bounds gj , the following criterion gives good
results

krLk2 = krg0=g0 �
X
j

�jrgj=gjk2: (108)

The reduction algorithms is

If krLk2 � � Then � := �=�: (109)
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In the examples, we use � = 0:005 and � = 1:05. A precise convergence optimization is
performed when �min = �2 is suÆciently small (e.g. �min = 10�3). With this algorithm
the parameter � is reduced automatically without any interaction from the user.

5.2 Solving optimization problems with a large number of constraints

Solving the continuum topology design problem with local stress constraints by numerical
techniques results in a very large scale optimization problem. For the displacement based
analysis and for the approximation of the density, the structure is discretized by �nite
elements, using the standard approach of continuum topology design (see e.g. Ref. [3]). In
order to achieve a reasonable resolution of the optimal structure, i.e., a reasonable de�nition
of topology and shape through the density, we need to use a fairly �ne discretization. Thus
in the optimization problem we have a large number of design variables coming from the
discretization of the material distribution. Moreover, we have here also to treat a large
number of stress constraints. If the optimal distribution of material is made up of only
voids and solid, we can by analogy to fully stressed design estimate the percentage of
active constraints at the optimum to be approximately proportional to the ratio between
the volume of the structure and the volume of the design domain. This conclusion remains
roughly the same with the �-relaxed formulation because relaxation leads to a removal of a
stress from the active constraint set as soon as the density of an element is close to its lower
bound. This is a conservative estimate on the number of active constraints, particularly
during the �rst steps of the optimization process where large zones of intermediate density
leads to huge number of active stress constraints.

Once again, the solution procedure based on sequential mathematical programming,
which was elaborated in Refs. [12, 13, 14], gives full satisfaction.

Di�erent choices of convex approximations for compliance and eigenvalues in topol-
ogy design have been discussed above. However, for stress constraints, we simply use a
CONLIN approximation scheme [24] of the constraints. For an eÆcient use of the classical
structural approximations, the stress constraints have to be written in a more convenient
way (observing that the density variables are strictly positive for � > 0):

k�k
�l

� �

�
+ � � 1 (110)

Numerical experiments showed that the mixed approximations of CONLIN were suÆciently
conservative and precise when applied to this statement, the explanation being that the
relaxation term ��=� is a concave term which makes a convex approximation more conser-
vative. An advantage of using the standard CONLIN approximations is that the solution
of the convex and separable subproblems can be performed with a robust second order dual
algorithm designed by Fleury [18, 21, 23]. This algorithm is able to deal with the huge
dimensions of the problem and provides a solution within a reasonable computation time.

In addition, any strategy that aims at reducing the number of constraints to be handled
by the optimizer is favorable to diminish the computational e�ort. If a priori, constraints
are likely to be satis�ed, one can save some e�ort by removing them from the set restrictions

48



0

200

400

600

800

1000

1200

20 40 60 80 100

Number of active constraints
Number of preselected constraints

Figure 22: Number of active and preselected constraints (iterations 1-110)

submitted to the optimization algorithms. So, we also implemented an active constraint
selection (deletion) strategy in order to do a preselection of the potentially dangerous stress
constraints. At the beginning of the optimization process, the selection is large, because
large modi�cations of the design variables occur and a lot of constraints can become active
or not activate. But at the end of the optimization the set of active constraints is stable
and it can be restricted to a little fraction of the dangerous elements, whose stress level lies
within a small margin from stress limit. Moreover, the non active stress constraints can
be kept as side constraints in the sub-problems of the iterative procedure by a zero order
approximation.

Figure 22, which is related to a typical stress constrained problem, illustrates the iter-
ation history for the number of active stress constraints (active after dual maximisation)
and for the number of preselected potentially dangerous constraints retained for sensitivity
analysis. During the �rst design steps the number of active stress constraints is quite large:
1112 potentially dangerous stresses are retained for sensitivity analysis and 648 of them
are active in the CONLIN dual optimizer. Then progressively these number are reduced
and become stable with the convergence of the design variables. In the �nal iterations,
the number of active constraints is reduced to 446 potentially dangerous stresses and 180
really active constraints.

6 CONCLUSIONS

As a conclusion, we can remind the advantages of Sequential Convex Programming ap-
proach:

� Dual solvers allows to solve eÆciently and with a minimum computation time opti-
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mization sub-problems even with a large number of design variables.

� The solution procedure showed itself to be robust even for problems with a large
number of constraints like in stress constraints.

� One can greatly improve convergence rates and reduce the number of re-analyses to
come to a stationary solution when using appropriate approximation schemes. For
�rst order schemes, MMA is generally more eÆcient than CONLIN because of the
capability to adapt conservativeness of the approximation to problem characteristics.
Good results can also be expected with high quality approximation schemes based
on second order expansions and estimated curvature information. However, this kind
of procedure is sometimes more fragile.

� One major advantage of SCP approach compared to Optimality Criteria stems from
the inherent 
exibility and generality of the approach to solve various kinds of prob-
lems in topology: compliance, eigenfrequency, stress constraints, design of materials,
design of compliant mechanism : : :

� Finally a very important characteristic of SCP approach is that one has in hands
mathematical foundations to attack special problems: relaxing unfeasible constraints,
perturbation of non-regular problem ('singularity' phenomenon of local constraints),
etc. This gives a rigorous framework for future developments and research.
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