New Developments for an Efficient Solution of the Discrete Material Topology Optimization of Composite Structures

P. Duysinx°, T. Gao°*, W. Zhang*, C. Fleury°, and M. Bruyneel+

° LTAS - Aerospace and Mechanics Department
University of Liège
* Northwestern Polytechnical University, Xi’an, China
+ SAMTECH SA. – Liège, Belgium
INTRODUCTION

- Development of new renewable energy systems: high performance materials (strength, durability...)

- Sustainability of transportation systems: weight reduction

- Revived interest in composite structures.
 ➔ optimization of composites to take the best of their performances
Goals of this work

- Problems to be addressed:
 - Optimal layout of laminates over the structure
 - Through-the-thickness-optimization of composites: stacking sequence optimization

- Discrete Material Optimization approach
 - Improve and robustify
Goals of this work

- Discrete Material Optimization approach
 - Formulate the optimization problem as a ‘n’ materials selection problem
 - Use an extended topology optimization approach to solve the problem in continuous variables
 - General / global approach to solve optimal layout and stacking sequence

\[C_i = \sum_{j=1}^{m} w_{ij} C_i^{(j)} \]

\[0 \leq w_{ij} \leq 1 \quad \sum_{j=1}^{m} w_{ij} \leq 1 \]

\[w_{ik} = 0 \quad (k \neq j) \text{ when } w_{ij} = 1 \]
Goals of this work

- Discrete Material Optimization
 - Pioneer work by Stegmann and Lund (2005)
 - Several interpolation schemes (DMO1...5)
 - New approach by Bruyneel (2011) with the Shape Function with Parameterization (SFP)
 - Limited to four materials (0°/90°/-45°/45°) or three materials (0°/90°/ (45°/-45°))

- This work:
 - Generalize the DMO and SFP
 - Investigate the penalization
 - Tailor a robust solution procedure based on the sequential convex programming (approximation + solution using efficient math programming algos)
 - Validate on applications
Outline

- Introduction & motivation
- Discrete Material Optimization
 - Interpolation schemes:
 - DMO,
 - SFP,
 - BVCP
 - Penalization schemes
- Laminate optimization problem
- Numerical applications
 - In-plane laminate optimization
 - Composite shell optimization

Conclusion & Perspectives
DMO (*Stegmann and Lund, 2005*)

- **DMO4 interpolation scheme:**
 - Extension of Thomsen (1992) and Sigmund & Torquato (2000) topology optimization schemes
 - Introduces one existence variable ([0,1]) per material
 - Uses a power law (SIMP) penalization of intermediate densities

\[w_{ij} = x_{ij}^p \prod_{\substack{\xi = 1 \\ \xi \neq j}}^{m_v} \left(1 - x_{i\xi}^p \right) \quad \text{with} \quad 0 \leq x_{ij} \leq 1 \]

![Graphs showing interpolation](https://via.placeholder.com/150)

- \(w_1 \) with \(p = 3 \)
- \(w_1 \) with \(p = 15 \)
Shape Function with Penalization (SFP)
Bruyneel (2011)

- SFP scheme takes the Lagrange polynomial interpolation of finite element shape functions
 - For 0°/90°/45°/-45°: four-node finite element
 - For 0°/90°/[45°/-45°]: three-node finite element

\[
\begin{align*}
 w_1 &= \frac{1}{4} (1 - R)(1 - S) \\
 w_2 &= \frac{1}{4} (1 + R)(1 - S) \\
 w_3 &= \frac{1}{4} (1 + R)(1 + S) \\
 w_4 &= \frac{1}{4} (1 - R)(1 + S)
\end{align*}
\]

- Introduces a power penalization (SIMP)

\[
w_i^{SFP} = \left[\frac{1}{4} (1 \pm R)(1 \pm S) \right]^p
\]
Shape Function with Penalization (SFP)
Bruyneel (2011)

- SFP shape functions and penalization

\[w_i^{SFP} = \left[\frac{1}{4} (1 \pm R)(1 \pm S) \right]^p \]

- Two design (instead of 4) variables ranging in \([-1, 1]\)
- Extension to ‘n’ node finite element theoretically possible, but problem rapidly complex
Bi-valued coded parameterization
(G. Tong et al. 2011)

- Bi-value coding parameterization generalizes the SFP scheme
- Abandon the shape function idea, but keep the idea of coding the materials using bi-value variables (typically [-1,1])

\[w_{ij} = \left[\frac{1}{2^m} \cdot \prod_{k=1}^{m_v} \left(1 + s_{jk} x_{ik} \right) \right]^p \] with \(-1 \leq x_{ik} \leq 1\) and \(k = 1, \ldots, m_v\)

- Number of design variable is \(m_v = \log_2 m\)
 - Possible to interpolate between \(2^{(m_v-1)}\) to \(2^{m_v}\) materials with \(m_v\) variables
 - Introduce a penalization scheme (here power law) to end-up with -1/1 values
Bi-valued coded parameterization
(G. Tong et al. 2011)

- Visualization: for $m_v=2$ and $m_v=3$, the method recovers 4-node and brick (8-node) elements shape functions.

<table>
<thead>
<tr>
<th>j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1 s_{jk} values ($m_v=2, m=4$)

(a) $m_v=2$, $m=4$

(b) $m_v=3$, $m=8$
Penalization schemes

To come to a solution with one single material, one introduces a penalization schemes:

- SIMP
 \[f(\chi) = \chi^p \]

- RAMP (Stolpe & Svanberg, 2001)
 \[f(\chi) = \frac{\chi}{1 + p(1 - \chi)} \]

- Halpin Tsai (Halpin-Tsai, 1969)
 \[f(\chi) = \frac{r\chi}{(1 + r) - \chi} \]

- Polynomial penalization (Zhu, 2009)
 \[f(\chi) = \frac{\alpha - 1}{\alpha} \chi^p + \frac{1}{\alpha} \chi \]
Penalization schemes

- Choice of penalization scheme
 - Basically one can find equivalent penalizations of intermediate densities by a proper choice of the parameters
 \[P=3 \leftrightarrow r=0.269 \leftrightarrow \alpha=16 \]
 - Polynomial / RAMP and Halpin Tsai are necessary when considering body loads (see Bruyneel & Duysinx, 2005)
 - Polynomial is generally the simplest and the most effective in many cases

- Continuation procedure (Bendsoe, 1989) i.e. increasing progressively the penalization parameter \(p \)
 - Should avoid being trapped in local optima
 - In practice, here, the numerical experiments have reported no influence of even detrimental influence.
Optimization Problem Formulation

- **Laminate optimization**
 - Compliance minimization under given load cases

 \[\text{find: } \{x_{ik}\} \quad (i = 1, \ldots, n; k = 1, \ldots, m_v) \]

 \[\text{minimize: } C = F^T u \]

 subject to: \(F = Ku \)

 - For pure laminate optimization, no resource (volume) constraint is generally necessary

- **Topology optimization of laminate**
 - Selection of ply orientation and layout of the laminate

 \[c^l = (\mu_1)^q \left(\sum_{i=1}^{n'} w_i^l c_i^l \right) \]

 \[\sum_{l=1}^{n_v} \mu_1 V_l \leq V \]

- Introduce a volume constraint of the foam or of the fiber material
Sensitivity analysis

- Sensitivity analysis
 \[
 \frac{\partial C}{\partial x_{ik}} = 2u^T \frac{\partial F}{\partial x_{ik}} - u^T \frac{\partial K}{\partial x_{ik}} u = -u^T \frac{\partial K}{\partial x_{ik}} u
 \]

 Requires the derivatives of the weighting functions
 \[
 \frac{\partial K_i}{\partial x_{ik}} = \sum_{j=1}^{m} \frac{\partial w_{ij}}{\partial x_{ik}} K_i^{(j)}
 \]

- Solution of optimization problem: Sequential Convex Programming
 - Sequence of explicit subproblems
 - CONLIN (Fleury, 1989)
 - GCMMA (Bruyneel et al., 2002)
 - General strategy with efficient capabilities in treating large scale problems
Implementation

- Implementation
 - Analysis carried out in SAMCEF Composites
 - Laminate plate elements
 - Thick composite shells (8-node bricks)
- Optimization
 - Boss Quattro Open Object Oriented platform for Optimization
Design problem

- Design variables (more than 1,000):
 - Composite panels and stringers lay-ups (thicknesses, ply proportions)
 - Stringer dimensions
- Minimize weight
- Constraints (more than 100,000)
 - Reserve factors
 - Buckling, reparable, ...

Illustration of limitation of present solvers

Solution of large scale problem using CONLIN

With courtesy by Samtech and Airbus Industries
Numerical applications: Square plate under vertical force

- Maximum in-plane compliance problem is solved by selecting the optimal orientation of the ply

.Loads and boundary conditions Design model with 4x4 patches

Table 4 Material properties

<table>
<thead>
<tr>
<th></th>
<th>E_x</th>
<th>E_y</th>
<th>G_{xy}</th>
<th>ν_{xy}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>146.86GPa</td>
<td>10.62GPa</td>
<td>5.45GPa</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Table 3 Orientations

<table>
<thead>
<tr>
<th>Number of material phases (m)</th>
<th>Number of design variables for each region (m_v)</th>
<th>Discrete orientation angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>90/45/0/-45</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>80/60/40/20/0/-20/-40/-60/-80</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>90/75/60/45/30/15/0/-15/-30/-45/-60/-75</td>
</tr>
</tbody>
</table>
Numerical applications: Square plate under vertical force

(a) DMO ($C=1.220 \times 10^{-4}$)
$\delta_{v}=4$

(b) SFP ($C=1.182 \times 10^{-4}$)
$\delta_{v}=2$

(c) BCP ($C=1.182 \times 10^{-4}$)
$\delta_{v}=2$

Optimization results of the square plate under vertical force ($m=4$)
Numerical applications: Square plate under vertical force

Iteration histories of the weight for patch 16 (BCP m=4)
Numerical applications: Square plate under vertical force

Influence of the penalization factor \(p \) of the BCP scheme upon the optimization results
Numerical applications: Square plate under vertical force

- Topology optimization: void + laminate
- Volume constraint: $V < 11/16$

4 orientations
90/45/0/-45

18 orientations
90/80/70/60/50/40/30/20/10/0/
-10/-20/-30/-40/-50/-60/-70/-80
Numerical applications: Square plate under vertical force

- Both orthotropic glass-epoxy and isotropic polymer-foam are involved
- Amount of glass-epoxy is limited to 11 patches

Optimization result of the square plate under vertical force with volume constraint:
Glass-epoxy with 4 orientations (90/45/0/-45) and polymer-foam

- Remark: convergence is difficult. CONLIN and MDQA fail. GCMMA-V4 converges after 150 iterations
Numerical applications: Simply support beam (MBB beam)

- A simply-supported beam of one single layer

- Mesh: 240×40 quadrangular finite elements
- Possible ply orientation: $m=36$
 \(90/85/80/75/70/65/60/55/50/45/40/35/30/25/20/15/10/5/0/-5/-10/-15/-20/-25/-30/-35/-40/-45/-50/-55/-60/-65/-70/-75/-80/-85\)
 - 6 design variables ($mv=6$) are needed for each designable patch
Numerical applications: Simply support beam (MBB beam)

Optimization results using BCP scheme (Patch: 12×4, m=36)
Numerical application: long box

- 4 layers; element size=4
- L1 & L4: glass-epoxy (90/45/0/-45)
- L2 & L3: glass-epoxy (90/45/0/-45) + polymer-foam
- Orientation: 90/45/0/-45 in 1-2 plane for each element axes
Numerical application: long box

- Objective: minimize structural compliance
- 90° /45° /0° /-45° (blue/cyan/yellow/red)

Layer 1 (inner ply)

Layer 2

Layer 3

Layer 4 (outer ply)
Numerical application: long box

- Objective: minimize structural compliance
 s.t. volume constraint: glass-epoxy < 80%

- Results:
Numerical application: long box

- Layer 1
- Layer 2
- Layer 3
- Layer 4

- 90°-45°-0°-45° (blue/cyan/yellow/red)
CONCLUSIONS

- A novel parameterization scheme based on a bi-value coding for solving the discrete material optimization of composite structures

- Reduced number of design variables, the BCP scheme generalizes the SFP scheme by Bruyneel (2011) and is a challenger to the classic DMO for large-scale problems

- BCP formulation provides a well-posed problem for an efficient solution using sequential convex programming algorithms (15-20 iterations necessary)
PERSPECTIVES

- Extend the application of this novel parameterization scheme to larger problems involving industrial composite structures.

- Including compliance, displacement, stress constraints but also buckling and perimeter constraints.
THANK YOU VERY MUCH FOR YOUR ATTENTION

Acknowledgement: This work was supported by the Walloon Region of Belgium and SKYWIN (Aerospace Cluster of Wallonia), through the project VIRTUALCOMP.
Pierre DUYSINX
Automotive Engineering
Aerospace and Mechanics Department
of University of Liège

Chemin des Chevreuils, 1 building B52
4000 Liège Belgium

Email: P.Duysinx@ulg.ac.be
Tel +32 4 366 9194
Fax +32 4 366 9159
url: www.ingveh.ac.be