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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

� Development of new 
renewable energy systems: 
high performance materials 
(strength, durability…)

INTRODUCTION

� Sustainability of 
transportation systems: 
weight reduction

� Revived interest in composite structures. 

� optimization of composites to take 
the best of their performances
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Goals of this work

� Problems to be addressed:
� Optimal layout of laminates over the structure

� Through-the thickness-optimization of composites: 
stacking sequence optimization

� � Discrete Material Optimization approach
� Improve and robustify
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Goals of this work

� Discrete Material Optimization approach
� Formulate the optimization problem as a ‘n’ materials 

selection problem

� Use an extended topology optimization approach to solve 
the problem in continuous variables

� General / global approach to solve optimal layout and 
stacking sequence

void

0°

90°

45°/-45°

-60°/0°/60°

8
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Goals of this work

� Discrete Material Optimization

� Pioneer work by Stegmann and Lund (2005)

� Several interpolation schemes (DMO1…5)

� New approach by Bruyneel (2011) with the Shape Function 
with Parameterization (SFP)

� Limited to four materials (0°/90°/-45°/45°) or three 
materials (0°/90°/ (45°/-45°))

� This work:

� Generalize the DMO and SFP

� Investigate the penalization

� Tailor a robust solution procedure based on the sequential 
convex programming (approximation + solution using 
efficient math programming algos)

� Validate on applications
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Outline

� Introduction & motivation

� Discrete Material Optimization
� Interpolation schemes: 

� DMO, 

� SFP, 

� BVCP

� Penalization schemes

� Laminate optimization problem

� Numerical applications
� In-plane laminate optimization

� Composite shell optimization

� Conclusion & Perspectives
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

DMO (Stegmann and Lund, 2005)

� DMO4 interpolation scheme:

� Extension of Thomsen (1992) and Sigmund & Torquato
(2000) topology optimization schemes

� Introduces one existence variable ([0,1]) per material

� Uses a power law (SIMP) penalization of intermediate 
densities

( )
v

1

1 with 0 1
m

p p
ij ij i ij

j

w x x xξ
ξ
ξ

=
≠

= − ≤ ≤∏

w1 with p=3 w1 with p=15
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Shape Function with Penalization (SFP) 
Bruyneel (2011)

� SFP scheme takes the Lagrange polynomial 
interpolation of finite element shape functions

� For 0°/90°/45°/-45°: four-node finite element

� For 0°/90°/[45°/-45°]: three-node finite element

� Introduces a power penalization (SIMP)

( )( ) ( )( )

( )( ) ( )( )

1 2

3 4

1 1
1 1 1 1

4 4
1 1

1 1 1 1
4 4

w R S w R S
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Shape Function with Penalization (SFP) 
Bruyneel (2011)

� SFP shape functions and penalization

� Two design (instead of 4) variables ranging in [-1,1]

� Extension to ‘n’ node finite element theoretically 
possible, but problem rapidly complex

( )( )1
1 1

4

p
SFP
iw R S

 = ± ±  
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Bi-valued coded parameterization 
(G. Tong et al. 2011)

� Bi-value coding parameterization generalizes the SFP 
scheme

� Abandon the shape function idea, but keep the idea of 
coding the materials using bi-value variables (typically 
[-1,1])

� Number of design variable is

� Possible to interpolate between 2(mv-1) to 2mv materials 
with mv variables

� Introduce a penalization scheme (here power law) to 
end-up with -1/1 values

v 2logm m=

( )
v

v
1

1
1 with 1 1 and 1, ,

2 v

pm

i j jk ik ikm
k

w s x x k m
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Bi-valued coded parameterization 
(G. Tong et al. 2011)

� Visualization: for mv=2 and mv=3, the method recovers 
4-node and brick (8-node) elements shape functions. 
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Penalization schemes

� To come to a solution with one single material, one 
introduces a penalization schemes:

� SIMP

� RAMP (Stolpe & Svanberg, 2001)

� Halpin Tsai (Halpin-Tsai, 1969)

� Polynomial penalization (Zhu, 2009)

( ) pf χ χ=

( )
1 (1 )

f
p

χχ
χ

=
+ −

( )
(1 )

r
f

r

χχ
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Penalization schemes

� Choice of penalization scheme

� Basically one can find equivalent penalizations of 
intermediate densities by a proper choice of the 
parameters

P=3 �� r=0,269 �� α=16
� Polynomial / RAMP and Halpin Tsai are necessary when 

considering body loads (see Bruyneel & Duysinx, 2005)

� Polynomial is generally the simplest and the most effective 
in many cases

� Continuation procedure (Bendsoe, 1989) i.e. increasing 
progressively the penalization parameter p

� Should avoid being trapped in local optima

� In practice, here, the numerical experiments have 
reported no influence of even detrimental influence.
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Optimization Problem Formulation

� Laminate optimization

� Compliance minimization under given load cases

� For pure laminate optimization, no resource (volume) 
constraint is generally necessary

� Topology optimization of laminate

� Selection of ply orientation and layout of the laminate

� Introduce a volume constraint of the foam or of the fiber 
material

{ } ( )v

T

find:    1, , ; 1, ,

minimize: 

subject to: 

ikx i n k m

C

= =

=
=

F u

F Ku

⋯ ⋯

( )
1

ln
ql l l

l i i
i

c w cµ
=

 
=  

 
∑

v

1

n

l l
l

V Vµ
=

≤∑



U
 N
 I V

 E
 R
 S
 I T

 Y
   o

 f   L
 i è

g
 e
 

3
2
n
d
 R
IS
O
 In

t
S
y
m
p
o
s
iu
m
, R

o
s
k
ild
e
, S

e
p
te
m
b
e
r 5

-9
, 2

0
1
1

INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Sensitivity analysis 

� Sensitivity analysis

� Requires the derivatives of the weighting functions

� Solution of optimization problem: Sequential Convex 
Programming

� Sequence of explicit subproblems

� CONLIN (Fleury, 1989) 

� GCMMA (Bruyneel et al., 2002)

� General strategy with efficient

capabilities in treating large scale 

problems

T T T2
ik ik ik ik

C

x x x x

∂ ∂ ∂ ∂= − = −
∂ ∂ ∂ ∂

F K K
u u u u u

( )

1

m
jiji

i
jik ik

w

x x=

∂∂ =
∂ ∂∑
K
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Implementation

� Implementation

� Analysis carried out in SAMCEF Composites

� Laminate plate elements

� Thick composite shells (8-node bricks)

� Optimization

� Boss Quattro Open Object Oriented platform fro 
Optimization
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

OPTIMIZATION OF LARGE SCALE SYSTEMS

� Design problem

� Design variables (more than 1.000):

� Composite panels and stringers lay-ups 
(thicknesses, ply proportions)

� Stringer dimensions

� Minimize weight

� Constraints (more than 100.000)

� Reserve factors

� Buckling, reparability, …

� Solution of large 
scale problem using 
CONLIN

With courtesy by Samtech and Airbus Industries

� Illustration of limitation of 
present solvers
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Numerical applications: Square plate 
under vertical force

� Maximum in-plane compliance problem is solved by 
selecting the optimal orientation of the ply

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Design model with 4×4 patchesLoads and boundary conditions
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Numerical applications: Square plate 
under vertical force

Optimization results of the square plate under vertical force (m=4)
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Numerical applications: Square plate 
under vertical force

Iteration histories of the weight for patch 16 (BCP m=4)
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Numerical applications: Square plate 
under vertical force

Influence of the penalization factor p of the BCP scheme upon the 
optimization results
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Numerical applications: Square plate 
under vertical force

� Topology optimization: void + laminate

� Volume constraint: V < 11/16

4 orientations
90/45/0/-45

18 orientations
90/80/70/60/50/40/30/20/10/0/
-10/-20/-30/-40/-50/-60/-70/-80
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Numerical applications: Square plate 
under vertical force

� Both orthotropic glass-epoxy and isotropic polymer-
foam are involved

� Amount of glass-epoxy is limited to 11 patches

� Remark: convergence is difficult. CONLIN and MDQA fail. 
GCMMA-V4 converges after 150 iterations

Optimization result of the square 
plate under vertical force with 

volume constraint
Glass-epoxy with 4 orientations 
(90/45/0/-45) and polymer-foam
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Numerical applications: Simply support 
beam (MBB beam)

� A simply-supported beam of one single layer

� Mesh: 240×40 quadrangular finite elements

� Possible ply orientation: m=36 
(90/85/80/75/70/65/60/55/50/45/40/35/30/25/20/15/
10/5/0 /-5/-10/-15/-20/-25/-30/-35/-40/-45/-50/-55/-
60/-65/-70/-75/-80/-85)

� 6 design variables (mv=6) are needed for each designable 
patch
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Numerical applications: Simply support 
beam (MBB beam)

Optimization results using BCP scheme (Patch: 12×4, m=36)
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Numerical application: long box

� 4 layers; element size=4

� L1 & L4: glass-epoxy (90/45/0/-45)

� L2 & L3: glass-epoxy (90/45/0/-45) + polymer-foam

� Orientation: 90/45/0/-45 in 1-2 plane for each element 
axes

L

D

L=200 D=40 T=1

2
1
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Numerical application: long box

� Objective: minimize structural compliance

� 90°/45°/0°/-45° (blue/cyan/yellow/red)

Layer 1 (inner ply) Layer 2

Layer 3 Layer 4 (outer ply)
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Numerical application: long box

� Objective: minimize structural compliance

s.t. volume constraint: glass-epoxy<80%

� Results:
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INTRODUCTION OPTIMIZATIONDMO CONCLUSIONAPPLICATIONSBCP

Numerical application: long box

Layer 1 Layer 2

Layer 3 Layer 4

�90°/45°/0°/-45°(blue/cyan/yellow/red)
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CONCLUSIONS

� A novel parameterization scheme based on a bi-value coding 
for solving the discrete material optimization of composite 
structures

� Reduced number of design variables, the BCP scheme 
generalizes the SFP scheme by Bruyneel (2011) and is a 
challenger to the classic DMO for large-scale problems

� BCP formulation provides a well-posed problem for an efficient 
solution using sequential convex programming algorithms 
(15-20 iterations necessary)
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PERSPECTIVES

� Extend the application of this novel parameterization 
scheme to larger problems involving industrial 
composite structures

� Including compliance, displacement, stress constraints 
but also buckling and perimeter constraints. 
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