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m Development of new m Sustainability of
renewable energy systems: transportation systems:
high performance materials weight reduction

(strength, durability...)
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m Revived interest in composite structures.

= optimization of composites to take
the best of their performances
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Goals Of thiS Work Univer‘sité

m Problems to be addressed:
m Optimal layout of laminates over the structure

m Through-the thickness-optimization of composites:
stacking sequence optimization
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m =>» Discrete Material Optimization approach

m Improve and robustify
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Goals Of this WOrk Université

de Liége

m Discrete Material Optimization approach

m Formulate the optimization problem as a ‘n’ materials
selection problem

m Use an extended topology optimization approach to solve
the problem in continuous variables
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x m General / global approach to solve optimal layout and

= stacking sequence
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Goals Of this WOrk Univer‘sité
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m Discrete Material Optimization
m Pioneer work by Stegmann and Lund (2005)

= Several interpolation schemes (DMO1...5)

m New approach by Bruyneel (2011) with the Shape Function

with Parameterization (SFP)

= Limited to four materials (0°/90°/-45°/45°) or three
materials (0°/90°/ (45°/-45°))

m This work:

Generalize the DMO and SFP
Investigate the penalization

Tailor a robust solution procedure based on the sequential
convex programming (approximation + solution using
efficient math programming algos)

Validate on applications
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OUt/ine Université Y.

de Liége

Introduction & motivation

m Discrete Material Optimization
m Interpolation schemes:
= DMO,
= SFP,
« BVCP
m Penalization schemes
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m Laminate optimization problem

m Numerical applications
m In-plane laminate optimization
m Composite shell optimization

wcmnclusion & Perspectives
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J DMOQO (Stegmann and Lund, 2005) omverse |
I:\SJ e Liege =
2
0))]
g DMO4 interpolation scheme:
L,; m Extension of Thomsen (1992) and Sigmund & Torquato
E (2000) topology optimization schemes
é- m Introduces one existence variable ([0,1]) per material
5 m Uses a power law (SIMP) penalization of intermediate
densities
p - p i
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Shape Function with Penalization (SFP)
Bruyneel (2011)

Université

m SFP scheme takes the Lagrange polynomial
interpolation of finite element shape functions

m For 0°/90°/45°/-45°: four-node finite element
m For 0°/90°/[45°/-45°]: three-node finite element

W, :%(1- R)(1-S) w, :%(1+ R)(1-S)
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W, = %(1+ R)(1+S) w, = %(1— R)(1+9)

SH's S
4 3 -45° 90°
T Q R=+1 T
R R
=L L]
1 2 0° +45°

S=-1
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m Introduces a power penalization (SIMP)

~ZS5— W = B(li R)(1+ S)T
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Shape Function with Penalization (SFP) o
Bruyneel (2011) Ve Linge

m SFP shape functions and penalization
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m Two design (instead of 4) variables ranging in [-1,1]

m Extension to 'n’ node finite element theoretically
possible, but problem rapidly complex

~a—
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Bi-valued coded parameterization o
(G. Tong et al. 2011) Ve Linge

m Bi-value coding parameterization generalizes the SFP
scheme

m Abandon the shape function idea, but keep the idea of
coding the materials using bi-value variables (typically

[-1,1])
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m, P
W, :L%EH(HSJMK)} with-1<x, <landk =1,---,m,

m Number of design variable is m, =log, m

m Possible to interpolate between 2(mv-1) to 2mv materials
with m, variables

m Introduce a penalization scheme (here power law) to
end-up with -1/1 values

~a—
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Bi-valued coded parameterization
(G. Tong et al. 2011)

Université
de Liége

m Visualization: for m,=2 and m,=3, the method recovers
4-node and brick (8-node) elements shape functions.
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Penalization schemes

introduces a penalization schemes:
m SIMP
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m RAMP (Stolpe & Svanberg, 2001)

m Halpin Tsai (Halpin-Tsai, 1969)
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m Polynomial penalization (Zhu, 2009)

a-1 1
LIS ) =—x"+—x
a a
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m To come to a solution with one single material, one
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Penalization schemes onverste LI

de Liége

m Choice of penalization scheme
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= m Basically one can find equivalent penalizations of
< intermediate densities by a proper choice of the
E parameters
z P=3 &> r=0,269 €>  a=16
1' m Polynomial / RAMP and Halpin Tsai are necessary when
& considering body loads (see Bruyneel & Duysinx, 2005)
1(9 m Polynomial is generally the simplest and the most effective
?g in many cases
jﬂ m Continuation procedure (Bendsoe, 1989) i.e. increasing
S progressively the penalization parameter p

m Should avoid being trapped in local optima
m In practice, here, the numerical experiments have

reported no influence of even detrimental influence.
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Optimization Problem Formulation

B Laminate optimization
m Compliance minimization under given load cases

find: {x} (i=1---,mk=1--,m)
minimize: C=F'u
subject to: F =Ku
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m For pure laminate optimization, no resource (volume)
constraint is generally necessary

m Topology optimization of laminate
m Selection of ply orientation and layout of the laminate

c =(M)Q(ZW:Q'J IZ::MV. <V

w m Introduce a volume constraint of the foam or of the fiber
material
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Sensitivity analysis

m Sensitivity analysis
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0C oF oK oK

- — =2u"—-u"—u=-u"—u

m 0% 0% 0% 0%

3 m Requires the derivatives of the weighting functions
0 —|
-< aKI _ mOVV”K(J)
% I
° 0%, =1 0%
5 m Solution of optimization problem: Sequential Convex
?g Programming
h m Sequence of explicit subproblems
N = CONLIN (Fleury, 1989)

= GCMMA (Bruyneel et al., 2002)
m General strategy with efficient
capabilities in treating large scale

w problems
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Implementation Unwer_sité

®m Implementation
m Analysis carried out in SAMCEF Composites
= Laminate plate elements
= Thick composite shells (8-node bricks)
m Optimization
= Boss Quattro Open Object Oriented platform fro
Optimization
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OPTIMIZATION OF LARGE SCALE SYSTEMS Université

de Liége

e =1 ® |llustration of limitation of
—=_ | presentsolvers

m Solution of large
5 - | scale problem using
e | CONLIN
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m Design problem

m Design variables (more than 1.000):

» Composite panels and stringers lay-ups
(thicknesses, ply proportions)

» Stringer dimensions

m  Minimize weight

m  Constraints (more than 100.000)
» Reserve factors

_ . With courtesy by Samtech and Airbus Industries
ﬂ_ « Buckling, reparability, ...
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Numerical applications: Square plate

Maximum in-plane compliance problem is solved by
selecting the optimal orientation of the pIy

}3l14J15]16
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Loads and boundary conditions  Design model with 4x4 patches

Table 4 Material properties
Ex E\J va

-
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Xy
146.86GGPa 10.62GPa 5.45GPa 0.33
Table 3 Orientations
Number of Number of design
material phases variables for each Discrete orientation angle (°)

(m) region (m,)

4 2 90/45/0/-45
9 4 80/60/40/20/0/-20/-40/-60/-80
12 4 90/75/60/45/30/15/0/-15/-30/-45/-60/-75

Université

under vertical force de Livge
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Numerical applications: Square plate
under vertical force

Université
de Liege
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(a) DMO (C=1.220x10")  (b) SFP (C=1.182x10™) (c) BCP (C=1.182x107)
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=4 =2 m,=2

Optimization results of the square plate under vertical force (m=4)
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Numerical applications: Square plate

Université

under vertical force de Livge
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under vertical force

Numerical applications: Square plate
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Influence of the penalization factor p of the BCP scheme upon the
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Numerical applications: Square plate -
under vertical force e Lioge

m Topology optimization: void + laminate
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3
= = Volume constraint: V < 11/16
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Numerical applications: Square plate
under vertical force

m Both orthotropic glass-epoxy and isotropic polymer-
foam are involved

m Amount of glass-epoxy is limited to 11 patches

ALISYIAINN

T , : Optimization result of the square
O |\ I \ I \ plate under vertical force with
volume constraint
\ Glass-epoxy with 4 orientations

T B e (90/45/0/-45) and polymer-foam

T1T0C ‘6-S loquaidas ‘ap|soy

m Remark: convergence is difficult. CONLIN and MDQA fail.
GCMMA-V4 converges after 150 iterations
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Numerical applications: Simply support
beam (MBB beam)

m A simply-supported beam of one single layer

' r
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ALISY3IAIN

m Mesh: 240X40 quadrangular finite elements

m Possible ply orientation: m=36
(90/85/80/75/70/65/60/55/50/45/40/35/30/25/20/15/
10/5/0 /-5/-10/-15/-20/-25/-30/-35/-40/-45/-50/-55/-
60/-65/-70/-75/-80/-85)

m 6 design variables (mv=6) are needed for each designable

patch

MINIRODUCTION [ MO | BCP |UORTIMIZATION | ABPLICATIONS  |juCONCLUSTON
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Numerical applications: Simply support 8
beam (MBB beam) Universite

| | | | | | | | |
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Optimization results using BCP scheme (Patch: 12 X4, m=36)
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Numerical application: long box Universté

L=200 D=40 T=1
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| D2 |

g m 4 layers; element size=4

g m L1 & L4: glass-epoxy (90/45/0/-45)

a m |2 &L3: glass-epoxy (90/45/0/-45) + polymer-foam

f; m Orientation: 90/45/0/-45 in 1-2 plane for each element
E axes R e
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Numerical application: long box Universie

de Liége

m Objective: minimize structural compliance
m 90° /45° /O° /-45° (blue/cyan/yellow/red)
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w Layer 4 (outer ply)
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o Numerical application: long box universie
l:\SJ de Lié
2
n
g m Objective: minimize structural compliance
%’ s.t. volume constraint: glass-epoxy<80%
§' m Results:
' 1.0
i 0.8
@
§’ éo.é
2 :
;‘_I o 04
g 0.2
0.0

0 5 10 15 20 25 30 35

iteration
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" Numerical application: long box niversite ||
2

S
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Layer 1 Layer 2
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Layer 3 Layer 4

w m90745909-45° (blue/cyan/yellow/red)
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CONCLUSIONS

Université

A novel parameterization scheme based on a bi-value coding
for solving the discrete material optimization of composite
structures

Reduced number of design variables, the BCP scheme
generalizes the SFP scheme by Bruyneel (2011) and is a
challenger to the classic DMO for large-scale problems

BCP formulation provides a well-posed problem for an efficient
solution using sequential convex programming algorithms
(15-20 iterations necessary)
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PERSPECTIVES Universite

m Extend the application of this novel parameterization
scheme to larger problems involving industrial
composite structures
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m Including compliance, displacement, stress constraints
but also buckling and perimeter constraints.
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