The University of Liège wishes to use cookies or trackers to store and access your personal data, to perform audience measurement. Some cookies are necessary for the website to function. Cookie policy.
![]() ![]() | Delaunoy, A.* , Hermans, J.* , Rozet, F., Wehenkel, A., & Louppe, G. (2022). Towards Reliable Simulation-Based Inference with Balanced Neural Ratio Estimation. Advances in Neural Information Processing Systems. ![]() * These authors have contributed equally to this work. |
![]() ![]() | Hermans, J., Delaunoy, A., Rozet, F., Wehenkel, A., & Louppe, G. (2022). A Crisis In Simulation-Based Inference? Beware, Your Posterior Approximations Can Be Unfaithful. Transactions on Machine Learning Research. ![]() |
![]() ![]() | Hermans, J. (2022). Advances in Simulation-Based Inference: Towards the automation of the Scientific Method through Learning Algorithms [Doctoral thesis, ULiège - University of Liège]. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/289425 |
![]() ![]() | Hermans, J., Banik, N., Weniger, C., Bertone, G., & Louppe, G. (2021). Towards constraining warm dark matter with stellar streams through neural simulation-based inference. Monthly Notices of the Royal Astronomical Society. doi:10.1093/mnras/stab2181 ![]() |
![]() ![]() | Hermans, J., Banik, N., Weniger, C., Bertone, G., & Louppe, G. (11 December 2020). Probing Dark Matter Substructure with Stellar Streams and Neural Simulation-Based Inference [Poster presentation]. Machine Learning and the Physical Sciences. Workshop at the 34th Conference on Neural Information Processing Systems (NeurIPS). ![]() |
![]() ![]() | Hermans, J., Begy, V., & Louppe, G. (2020). Likelihood-free MCMC with Amortized Approximate Ratio Estimators. In Proceedings of the 37th International Conference on Machine Learning (pp. 4239-4248). ![]() |
![]() ![]() | Brehmer, J., Mishra-Sharma, S., Hermans, J., Louppe, G., & Cranmer, K. (19 November 2019). Mining for Dark Matter Substructure: Inferring subhalo population properties from strong lenses with machine learning. Astrophysical Journal, 886 (1). doi:10.3847/1538-4357/ab4c41 ![]() |
![]() ![]() | Louppe, G., Hermans, J., & Cranmer, K. (08 November 2019). Adversarial Variational Optimization of Non-Differentiable Simulators [Poster presentation]. AI Synergies, Brussels, Belgium. |
![]() ![]() | Louppe, G., Hermans, J., & Cranmer, K. (2019). Adversarial Variational Optimization of Non-Differentiable Simulators. Proceedings of Machine Learning Research. ![]() |
![]() ![]() | Volodimir, B., Hermans, J., Barisits, M., Lassnig, M., & Schikuta, E. (2019). Simulating Data Access Profiles of Computational Jobs in Data Grids. IEEE International Conference on eScience. doi:10.1109/eScience.2019.00051 ![]() |
![]() ![]() | Hermans, J., & Louppe, G. (2018). Gradient Energy Matching for Distributed Asynchronous Gradient Descent. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/226232. |