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Abstract

Linear models with stable error densities are considered. The local asymptotic normality
of the resulting model is established. We use this result, combined with Le Cam’s third lemma,
to obtain local powers of various classical rank tests (Wilcoxon’s and van der Waerden’s test,
the median test, and their counterparts for regression and analysis of variance) underα-stable
laws. The same results are used to construct new rank tests achieving parametric optimality
at specified stable densities. A Monte-Carlo study is conducted to compare their relative
performances.

Keywords : Stable distributions, local asymptotic normality, rank tests, asymptotic relative effi-
ciencies.

1 Introduction.

Due to their attractive stochastic properties,stable distributions(also calledα-stable) are ex-
tremely appealing from the point of view of stochastic modelling. They are, indeed, the only
nondegenerate distributions with a domain of attraction: nontrivial limits of normalized sums of
independent identically distributed terms are necessarily stable. They moreover constitute a quite
flexible four-parameter family, beyond location and scale,they also account for tail behavior and
asymmetries.

Empirical evidence of non-Gaussian stable behavior is present in a variety of fields, among
which economics, insurance, finance, signal processing, teletraffic engineering, ... In all those
fields, neglecting heavy tail and asymmetry features leads to underestimating risks, sometimes
quite significantly, hence taking adventurous decisions that possibly induce severe losses. Student
families (generally with three degrees of freedom or more, that is, with finite moments of order
two) therefore are quite popular in such areas; Student densities, however, do not enjoy the stability
property, and their tails often are still too light, failingto provide a reasonable account of many
stylized facts. Stable distributions, often referred to asstable Paretiandistributions in the financial
literature, are among the most frequently proposed candidates for describing the distribution of
stock returns: see Fama (1965a and 1965b), Mandelbrot (1963), Mittnik et al. (1998, 2000), etc.
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Despite their attractiveness, however, stable distributions, in all those areas, still remain largely
absent from daily practice. While acknowledging the fact that observed data do exhibit heavy-
tailed and skewed behavior, most practitioners stick to classical statistical and econometric meth-
ods. The reason for that somewhat schizophrenic attitude probably originates in a lack of well-
documented statistical and econometric procedures for models involving stable densities, and the
widespread opinion that they are hardly tractable.

That opinion is, to a large extent, unfounded. Contrary to a very common belief, stable families
are extremely well-behaved. DuMouchel (1973) long time agoshowed that maximum likelihood
estimators of the parameter of stable distributions are asymptotically normal, at standard root-
n rate. Pushing his results a bit farther, it can be seen that stable families actually arelocally
asymptotically normal(LAN) in the Le Cam sense, so that their asymptotic structureactually
resorts to the familiar Gaussian shift type—the most regular and classical statistical experiment
one can think of.

Now, putting local asymptotics and likelihood methods intopractice is not so straightforward.
The main drawback of stable densities, from an applied statistics perspective, indeed, is the lack of
closed-form expressions for likelihoods, hence for their log-derivatives, the corresponding max-
imum likelihood estimators, likelihood ratio statistics,etc. That lack of closed-form expressions
is probably the main reason why practitioners remain reluctant about stable error distributions.
The advent of powerful and user-friendly symbolic calculators such as Mathematica, however, has
transformed the lack of closed-formulas from a major hindrance into a mere technical nuisance
(see Boraket al. (2005) for an overview). Under the impulsion of Zolotarev, Nolan, and a few
others, a number of computationally efficient integral formulas for stable distributions have been
derived over the years (Zolotarev (1986 and 1995), Nolan (1997 and 1999)). These formulas are
at the heart of the numerical results which are in the presentpaper.

The absence of moments, on the other hand, makes asymptotic properties hard to derive, and a
number of important problems still remain open. Among them is a full description of the asymp-
totic behavior of Student’st statistic for location (see for instance the remarkable papers by Logan
et al. (1973) and Ginéet al. (1997)). Somewhat surprisingly, little is kown about the power (under
stable densities) of this statistic, a problem which, to thebest of our knowledge, only has been
considered by Benktuset al. (2007). This lack of results on performances or asymptotic perfor-
mances, as a rule, makes it difficult to convince practitioners to adopt any particular method rather
than any other one.

Alternatives to likelihood-based methods do exist, though, which all too often are ignored.
Fama and Roll (1968) for symmetric stable distributions with tail indices between 1 and 2, and
Press (1972) for generalα values, provide consistent estimators. A quantile-based approach pro-
posed by Fama and Roll (1971) and further enhanced by McCulloch (1986), and the method of
indirect estimation described in Garciaet al. (2010) are the most commonly used. Estimation in
regression models with symmetric stable errors has also been studied, either empirically (Blat-
tberg and Sargent (1971)) or theoretically (El Barmi and Nelson (1997)). More recently, Andrews
et al. (2009) study the case of autoregressive time series (both causal and noncausal) with non-
Gaussian stable noise and show that, in that model, while theestimators of the parameters of the
stable noise are again root-n asymptotically normal, those for the autoregressive parameters are
n1/α-consistent and converge in distribution to the maximizer of a random function.

Another alternative in the context are ranks. Rank-based methods, which are distribution-free,
and therefore valid under arbitrary densities, naturally come into the picture in the context. Yet,
nobody, it seems, ever considered them. An explanation might be, again, the absence of power or
asymptotic efficiency results.

2



The objective of this paper is twofold:

(i) establishing the local asymptotic normality (LAN) of linear models withα-stable error dis-
tributions (that model includes two-sample location, one-way analysis of variance, and re-
gression models with unspecified intercept); that LAN result settles the parametric efficiency
bounds for the problem and, combined with Le Cam’s third lemma, allows us to obtain local
powers and asymptotic relative efficiencies for a variety ofinference procedures, including
traditional rank tests (Wilcoxon, van der Waerden or sign tests);

(ii) analyzing the asymptotic performances of classical rank tests and deriving new ones (Cauchy
or α-stable score tests) adapted to stable error distributions.

Section2 presents some properties of stable distributions, and derives a result on the asymp-
totic behavior of stable score functions, to be used in the sequel. Section 3.1 establishes the local
asymptotic normality property we need to study local asymptotic powers. Section 3.2 studies the
performances of classical rank tests in the stable context.Asymptotic relative efficiencies are con-
sidered in Section 3.3, not only for the classical rank tests, but also for some new rank-based tests
achieving the parametric efficiency bounds at some specifiedstable densities. Numerical values of
those AREs are provided. A simulation study is conducted in Section4, while concluding remarks
are given in Section5. An appendix collects the proofs.

2 Stable distributions: some properties

Denote byfθθθ or fα,β,γ,δ theα-stable density function with parameterθθθ := (α, β, γ, δ)′ . Writing
fα,β for the standardized densityfα,β,1,0, we have

fα,β,γ,δ(x) =
1

γ
fα,β

(
x − δ

γ

)
, (2.1)

which characterizes the roles ofδ andγ as location and scale parameters, respectively. The inter-
pretation ofβ as askewness parameteris justified by the fact that, forβ = 0, the distribution is
symmetric aboutδ and, forβ = 1 (resp.,β = −1), the distribution is totally skewed to the right
(resp. to the left). The notationFθθθ andFα,β,γ,δ will be used for the corresponding distribution
function.

Certain choices ofθθθ yield well-known distributions, namely the Gaussian (α = 2, any β),
the Cauchy (α = 1 andβ = 0) and the Lévy (α = 1/2 andβ = 1). However, together with
the reflection of the Lévy distribution, these are theonly instances of stable distributions whose
density functions can be written explicitly in terms of elementary functions. For all other choices
of the parameters, there exist no closed form forfθθθ, and stable distributions are either defined in
terms of the inverse Fourier transform of their characteristic functions, or in the form of integral
formulas (see e.g. Nolan (1997) or Zolotarev (1986)).

A number of alternative parameterizations have been proposed in the literature, each having
its own advantages and some drawbacks (see Nolan (2010) for an overview). In the sequel, we are
working with Zolotarev’s so-calledM -parametrization, under which the logarithm of the charac-
teristic functionφ(t;α, β, γ, δ) of fα,β,γ,δ is defined as

log φ(t;α, β, γ, δ) :=

{
itδ − |γt|α

(
1 − iζsign(t)(|γt|1−α − 1)

)
if α 6= 1,

itδ − |γt|α (1 + iβsign(t)(2/π) log |γt|) if α = 1,
(2.2)
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with ζ := ζ(α, β) := −βtan(πα/2). Note that, in this parameterization,fα,β(x) = fα,−β(−x)
for x > ζ and all admissible(α, β).

It is well-known that“all (non-degenerate) stable distributions are continuous distributions
with an infinitely differentiable density”(Theorem 1.9 in Nolan (2010)). Hence, from (2.1), these
distributions also are continuously differentiable in thelocation parameterδ. The tail behavior of
these distributions is given, for|x| → ∞, by

1 − Fθθθ(|x|) ∼ Cθθθ|x|−α, (2.3)

whereCθθθ is a constant depending onθθθ and the sign ofx. Relation (2.3), by the way, justifies the
terminologytail index for the parameterα. Using (2.3), we can further prove the following (see
the Appendix for a proof).

Lemma 2.1 Define, for all admissibleθθθ, the score functionϕθθθ(x) := −ḟθθθ(x)/fθθθ(x). Then, for
all α < 2, ϕθθθ(x) = O(1/x) asx → ∞.

For an overview of other properties of these distributions,see for instance Feller (1971),
Samorodnitsky and Taqqu (1994) or Nolan (2010).

3 Rank-based tests for linear models under stable noise.

Denote byH(n)
θθθ (βββ) the hypothesis under which a vectorX

(n) := (X
(n)
1 , . . . ,X

(n)
n )′ of observa-

tions satisfies the equation

X
(n)
i = a +

K∑

k=1

c
(n)
ik βk + ǫ

(n)
i , i = 1, . . . , n, (3.1)

for somea ∈ R, wherec
(n)
i1 , . . . , c

(n)
iK , i = 1, . . . , n are regression constants,βββ := (β1, . . . , βK)′

are the regression parameters andǫ
(n)
i , i = 1, . . . , n is a sequence of i.i.d. errors with stable

densityfθθθ, whereθθθ = (α, β, γ, 0) ∈ ΘΘΘ.
This model (which encompasses the two-sample and one-factor analysis of variance models)

is of obvious theoretical and practical importance, and itsanalysis, under second-order moment
assumptions, is covered in all standard statistical textbooks. Yet, the stable case, with infinite
variances, remains much less explored. In particular, relatively little is known about the efficiency,
under stable densities, of testing procedures for the null hypothesisH(n)

θθθ (βββ). In this paper, we
are providing such efficiency results for the class of rank-based tests. Such tests indeed naturally
come into the picture, as their validity extends to completely unspecified error densities, among
which the stable ones, irrespective of the actual values ofα, β andγ.

3.1 Local Asymptotic Normality

The main theoretical tool throughout will be the local asymptotic normality ( LAN) property of
the regression model (3.1) under stable error densities. Such a property, which is of independent
interest, has never been considered, to the best of our knowledge, in the context of stable error
distributions.

Letting c̄
(n)
k := n−1

∑n
i=1 c

(n)
ik , c

(n)
i := (c

(n)
i1 , . . . , c

(n)
iK )′, C

(n) := n−1
∑n

i=1 c
(n)
i c

(n)
i

′
, and

K
(n) :=

(
C

(n)
)−1/2

, suppose that the following technical assumptions are fulfilled.
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ASSUMPTION(A1) For alln ∈ N, C
(n) is positive definite and converges, asn → ∞, to a positive

definite matrixK−2.

ASSUMPTION (A2) (Noether conditions) For allk = 1, . . . ,K, one has

lim
n→∞

[
max
1≤t≤n

(
c
(n)
tk − c̄

(n)
k

)2/ n∑

t=1

(
c
(n)
tk − c̄

(n)
k

)2
]

= 0.

Denote byP(n)
θθθ,a,βββ the probability distribution ofX(n) under (3.1), and let

Z
(n)
i (βββ) := X

(n)
i − a −

K∑

k=1

c
(n)
ik βk (i = 1, . . . , n), i = 1, . . . , n

be the residual for the valueβββ of the parameter: underP(n)
θθθ,a,βββ, theZ

(n)
i (βββ)’s are i.i.d. with density

f(α,β,γ,0). The following then holds (see the Appendix for a proof).

Proposition 3.1 (LAN) Suppose that Assumptions (A1) and (A2) hold. Letννν(n) := n− 1
2 K(n) and

fix θθθ = (α, β, γ, 0) ∈ ΘΘΘ, a ∈ R. Then, model (3.1), with parameterβββ ∈ R
K , is LAN. More

precisely, for allβββ ∈ R
K , and all bounded sequenceτττ (n) ∈ R

K ,

Λ
(n)

θθθ, βββ+ννν(n)τττ (n) := log
dP

(n)

θθθ,a,βββ+ννν(n)τττ (n)

dP
(n)
θθθ,a,βββ

= log

n∏

t=1

fθθθ

(
Z

(n)
t

(
βββ + ννν(n)τττ (n)

))

n∏

t=1

fθθθ

(
Z

(n)
t (βββ)

)

= τττ (n)′∆∆∆
(n)
θθθ (βββ) − 1

2τττ
(n)′τττ (n)I(θθθ) + oP (1)

under H(n)
θθθ (βββ) as n → ∞, where, setting ϕθθθ(·) := −ḟθθθ(·)/fθθθ(·) and

I(θθθ) :=
∫∞
−∞ ϕ2

θθθ(x)fθθθ(x)dx, I(θθθ)IK is the information matrix and

∆
(n)
θθθ (βββ) = n−1/2

(
K

(n)
)′ n∑

i=1

ϕθθθ

(
Z

(n)
i (βββ)

)
c
(n)
i

L→ N (0,I(θθθ)IK), (3.2)

the central sequence.

The LAN property is stated here under stable distributions,but actually holds, with information
matrix If (θθθ)IK and central sequence∆(n)

f (βββ), for a much broader class of densitiesf . A suffi-

cient condition is the mean-square differentiability off1/2 (see, e.g., van der Vaart (2000)). The
information matrix and the central sequence then take the same form as in Proposition3.1, but
with scoreϕ of the formϕf = −2sf−1/2, wheres stands for the mean square derivative off1/2.

Local Asymptotic Normality is the key result allowing us to study the asymptotic behavior
of rank-based tests under stable densities via the powerfulmachinery of the asymptotic theory of
statistical experiments associated with the name of Le Cam (as described, for example, in Le Cam
and Yang (2000), van der Vaart (2000) or Lehman and Romano (2005)). The application of that
theory, however, here is not as straightforward as usual, due to the fact that the central sequence
∆

(n)
θθθ (βββ) and the information quantityI(θθθ), for general values ofα andβ, cannot be expressed

under closed form.
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3.2 Rank-based tests when the intercept is a nuisance parameter.

Consider the problem of testing the null hypothesisH(n)(βββ0) under whichβββ = βββ0 in (3.1),

whereβββ0 is some fixed realK-vector, while the constant terma and the density ofǫ(n)
i , hence

that of a + ǫ
(n)
i remain completely unspecified. Denote byR

(n)
i the rank ofZ(n)

i (βββ0) among

Z
(n)
1 (βββ0), . . . , Z

(n)
n (βββ0); note that this rank does not depend on the unspecified intercepta.

The idea of using ranks in that context is quite natural, particularly so when heavy tails are
suspected. The vectorR(n) = R

(n)(βββ0) = (R
(n)
1 , . . . , R

(n)
n ) is not only distribution-free un-

der the null hypothesisH(n)(βββ0), it is maximal invariant under a generating group ofH(n)(βββ0).
Distribution-freeness makes it possible to construct rank-based tests with exact finite-sample crit-
ical values, while maximal invariance allows achieving parametric efficiency at some selected
reference density (see Hallin and Werker (2003)).

The rank-based statistics we are considering are of the form

∆∆∆
˜

(n)
J (βββ0) := n− 1

2

(
K

(n)
)′ n∑

i=1

J

(
R

(n)
i

n + 1

)
c
(n)
i , (3.3)

whereJ : (0, 1) → R is some score-generating function satisfying

ASSUMPTION (B) The score-generating functionJ : (0, 1) → R is not constant, and the dif-
ference between two non-decreasing monotone functionsJ1 : (0, 1) → R andJ2 : (0, 1) → R

which are right-continuous and square-integrable.

The vector ∆∆∆
˜

(n)
J (βββ0) has the same structure as the central sequence (3.2). Actually, letting

∆∆∆
(n)
J (βββ0) := n− 1

2

(
K

(n)
)′ n∑

i=1

J
(
F
(
Z

(n)
i (βββ0)

))
c
(n)
i ,

whereF is the unspecified distribution function of theǫ(n)
i ’s, the classical Hájek Projection The-

orem for linear rank statistics (see Hájek and Sidák (1967) or Puri and Sen (1985)) implies that,
under Assumptions (A1), (A2) and (B),

∆∆∆
˜

(n)
J (βββ0) −∆∆∆

(n)
J (βββ0) = oP(1) asn → ∞, underH(n)(βββ0), (3.4)

and that moreover
∆∆∆
˜

(n)
J (βββ0)

L→ N (0,J (J)IK) (3.5)

with J (J) :=
∫ 1
0 J2(u)du. Clearly, (3.4) and the fact that central sequences are only defined up

to oP(1)’s imply that, forJ(u) = Jf (u) := ϕf (F−1(u)), ∆∆∆
˜

(n)
J (βββ0) is a rank-based version of

the central sequence∆(n)
f (βββ0).

It also follows that, still underH(n)(βββ0), the test statistic

Q
˜

(n)
J (βββ0) := J (J)−1( ∆∆∆

˜
(n)
J (βββ0))

′( ∆∆∆
˜

(n)
J (βββ0)) (3.6)

is asymptotically (central) chi-square withK degrees of freedom; if moreoverJ = Jf and the

actual density of theǫ(n)
i ’s is f , then

Q
˜

(n)
f (βββ0) := Q

˜
(n)
Jf

(βββ0) = J (J)−1 (∆
(n)
f (βββ0))

′(∆
(n)
f (βββ0)) + oP(1) (3.7)

=: Q
(n)
f (βββ0) + oP(1),
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whereQ
(n)
f (βββ0) is the test statistic yielding, under error densityf , thelocally asymptotically max-

imin test forH(n)(βββ0) (see, e.g. Section 11.9 of Le Cam (1986))—a property the ranktest based

on Q
˜

(n)
f (βββ0), in view of (3.7), automatically inherits, with the substantial additional advantage,

though, that, unlikeQ(n)
f (βββ0), it is distribution-free under the null, irrespective of the actual un-

derlying density, be it a stable density.

Finally, consider a local alternative of the formβββ0 + n−1/2τττ. A standard application of Le
Cam’s third lemma (see van der Vaart (2000)) yields the following result (see the Appendix for a
proof).

Proposition 3.2 SetJ (J,θθθ) :=
∫ 1
0 J(u)ϕθθθ(F

−1
θθθ (u))du, and let Assumptions (A1), (A2) and (B)

hold. Then, underH(n)
θθθ (βββ0 + n− 1

2τττ), asn → ∞,

(i) ∆∆∆
˜

(n)
J (βββ0)

L−→ N (J (J,θθθ)τττ ,J (J)IK)), and

(ii) Q
˜

(n)(βββ0) is asymptotically noncentral chi-square, withK degrees of freedom and non-

centrality parameterτττ ′τττJ 2(J,θθθ)/J (J).

Here again, the results are stated for stable densities, buthold for all densitiesf for which the
model is locally asymptotically normal.

3.3 Local powers and asymptotic relative efficiencies.

The validity of the tests (3.6) extends to any underlying error density irrespective of the choice of
scoreJ(·). Moreover, under stable densityfθθθ, such a test, with score function

Jθθθ(x) = −f ′
θθθ(F

−1
θθθ (x))/fθθθ(F

−1
θθθ (x)), (3.8)

will be asymptotically optimal. The applicability of this optimality result is, however, hampered
by the (theoretical and practical) difficulties implied by the fact that the parametersθθθ of stable
distributions in applications are unknown, and are not easily estimated. It may be more interesting,
therefore, to dispose of valid tests whose power is known to be “not too bad” for a broad range
of θθθ values, and hence do not require estimation ofθθθ. The objective of this section is to describe
some of such tests and to compare their powers, by means of their asymptotic relative efficiency
(ARE).

Some of the most common rank-based tests are those reaching optimality under the Gaussian,
the logistic and the double-exponential distributions, respectively; they are
known as the van der Waerden, Wilcoxon and Laplace tests, andbased on the score-generating
functions

J1(x) = Φ−1(x), J2(x) =
π√
3
(2x − 1), andJ3(x) =

√
2 sign(F−1(x)), (3.9)

whereΦ denotes, as usual, the cdf of the standardized normal distribution, andF that of the
double-exponential distribution with variance 1. One of course may like to choose the scoresJθθθ

associated (see (3.8)) with the stable densityfθθθ. For instance, settingθθθ = (1, 0, 1, 0) yields the
Cauchy score-generating function

J4(x) = sin(2π(x − 1/2)). (3.10)
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The only other stable distribution for which the score-generating function can be written in closed
form is the Lévy distribution (i.e.θθθ = (.5, 1, 1, 0)), with

J5(x) =
√

2
(
Φ−1((x + 1)/2)

)2
(3 − 2

√
2
(
Φ−1((x + 1)/2

)2
).

For all other choices of tail indices, however, a numerical derivation ofJθθθ is possible, characteriz-
ing new tests with good asymptotic properties under strongly skewed and/or heavy-tailed errors.

Recall that asymptotic relative efficiency (ARE) between two testing procedures is the limit,
if it exists, of the ratio of the sample sizes they need in order to achieve comparable asymptotic
performances. Obtaining such AREs is in general a difficult task unless the model under study is
LAN. In the present case, denoting by AREθθθ(J/J̃) the asymptotic relative efficiency, under stable
densityfθθθ, of the rank-based test based on the score-generating function J with respect to the
rank-based test based on the score-generating functionJ̃ , the following result holds.

Proposition 3.3 LetJ and J̃ be two score-generating functions satisfying Assumption (B). Then,

AREθθθ(J/J̃) = J 2(J,θθθ)J (J̃)/J 2(J̃ , θθθ)J (J). (3.11)

Numerical evaluations of (3.11) is all but trivial, but can be obtained via inversion of the char-
acteristic function (2.2) and other techniques such as the Fast Fourier Transform or the evaluation
of complicated integral transforms such as those given in Nolan (1997). Details are discussed in
the Appendix.

Figure1 provides plots of ARE values for the Wilcoxon, Laplace and Cauchy tests with respect
to the van der Waerden ones as functions of the tail indexα, for a choice of values of the skewness
parameterβ ranging from 0 to 1. Note that these AREs are symmetric inβ, so that there is no
need to consider negative values of the skewness parameter.

Turning to the optimal scores for stable densities with tailparametersα = 1.6, 1.7, 1.8,
and 1.9, and skewness parameters|β| = 0, 0.2, and 0.4, the AREs of the corresponding rank tests,
still with respect to van der Waerden’s, are provided in Table 1. More complete tables as well as
Mathematica and R programs performing the various numerical evaluations can be found at the
addresshttp://homepages.ulb.ac.be/∼yvswan/.

Figure1 reveals that for|β| close to 1, van der Waerden tests are uniformly most powerful
among the four tests under study. On the other hand, when the errors are symmetric, the three
other contenders appear to be more powerful than van der Waerden, except for tail parameters that
are very close to the Gaussian (atα ≈ 1.97), where van der Waerden regains leadership. Also
note that, near the symmetric case|β| ≈ 0, the Cauchy and the Laplace are doing extremely well
whenα is close to 1, with the Cauchy test being best, as expected. Moreover, forα → 0, AREs
appear to become (a) arbitrarily close to zero in favor of vander Waerden tests as|β| → 1 and
(b) arbitrarily large in favor of Cauchy and Laplace tests asβ → 0. Interestingly (b) does not
hold for the AREs of Wilcoxon with respect to van der Waerden.Actually, it can be shown that
the latter is uniformly less than6/π, a limit which is attained under symmetricα-stable densities
with α ≈ 0.01. Finally note that, for fixedα > 0.5, all three ARE curves are strictly increasing
with β. This also holds true for the first two whenα nears 0, whereas, in the Cauchy case, some
oscillation seems to occur.

As for Table1, it shows that the optimal tests considered there outperform van der Waerden’s
under the stable density they were devised for, which is not asurprise, but also, quite interestingly,
under alternative values ofα andβ (in the range of values considered there). The lack of sensitivity
to variations of the skewness parameterβ is particularly remarkable.
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Figure 1: AREs of Wilcoxon, Laplace and Cauchy with respect to van der Waerden as functions
of the tail indexα, for various values of the skewness parameterβ.

α =1.6 α =1.7 α =1.8 α =1.9
|β| 0 0.2 0.4 0 0.2 0.4 0 0.2 0.4 0 0.2 0.4

α =1.6
0 1.2127 1.2045 1.1787 1.1332 1.1269 1.1075 1.0446 1.0407 1.0288 0.9444 0.9429 0.9386
0.2 1.2043 1.2129 1.2039 1.1277 1.1333 1.1256 1.0416 1.0447 1.0396 0.9433 0.9445 0.9428
0.4 1.1779 1.2033 1.2135 1.1100 1.12811 1.1337 1.0320 1.0425 1.0450 0.9396 0.9438 0.9450

α =1.7
0 1.2010 1.1954 1.1772 1.1442 1.1394 1.1241 1.0756 1.0721 1.0615 0.9893 0.9879 0.9834
0.2 1.1942 1.2011 1.1962 1.1393 1.1444 1.1392 1.0727 1.0757 1.0714 0.9882 0.9894 0.9876
0.4 1.1731 1.1925 1.2017 1.1236 1.1387 1.1448 1.0631 1.0730 1.0759 0.9845 0.9886 0.9897

α =1.8
0 1.1645 1.1614 1.1511 1.1313 1.1284 1.1188 1.0878 1.0852 1.0771 1.0240 1.0226 1.0182
0.2 1.1600 1.1647 1.1628 1.1276 1.1315 1.1291 1.0852 1.0879 1.0852 1.0228 1.0240 1.0222
0.4 1.1465 1.1587 1.1654 1.1161 1.1267 1.1319 1.0767 1.0849 1.0881 1.0190 1.0231 1.0242

α =1.9
0 1.1005 1.0994 1.0957 1.0878 1.0867 1.0831 1.0704 1.0693 1.0656 1.0405 1.0394 1.0361
0.2 1.0988 1.1008 1.1006 1.0862 1.0880 1.0876 1.0689 1.0706 1.0698 1.0394 1.0405 1.0394
0.4 1.0937 1.0988 1.1019 1.0813 1.0860 1.0887 1.0643 1.0686 1.0709 1.0360 1.0393 1.0406

Table 1: AREs for tests based on stable scores with respect tovan der Waerden’s. Rows correspond
to scores, columns to the (stable) densities under which AREs are computed. For instance, row 1
contains the AREs with respect to van der Waerden of the test based on stable scores forα = 1.6,
β = 0, under stable densities with tail parameterα = 1.6 and skewnessβ ranging from 0 through
0.4.
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4 Monte Carlo simulations.

This section is devoted to the validation, through Monte Carlo simulations, of the results obtained
in the previous sections. Our aim here is, on the one hand, to verify the ARE rankings between the
proposed rank-based tests and, on the other hand, to comparesuch tests with the classical Student
t-test whose behavior is well known to be (very) complicated to derive when confronted with an
α-stable universe (see, for instance, Efron (1969), Loganet al. (1973), or Ginéet al. (1997)).

We generatedN = 2500 samples from the regression models

Y
(l)
i = ((l/20))ci + ǫi, i = 1, . . . , n = 100, l = 0, 1, 2, 3, (4.1)

where the theǫi’s are i.i.d. with centered alpha-stable distribution. Theregression constantsci (i =
1, . . . , 100) (the same ones across the 2500 replications) were drawn from the uniform distribution
on [−5, 5].

Throughout, we performed the various tests at nominal level5% for the null hypothesis under
which the slopeβ of the model is equal to 0. ObservationsY

(0)
i thus are generated under the null,

Y
(1)
i , Y

(2)
i andY

(3)
i under increasing alternatives of the formβ = l/20, l = 1, 2 and3. Critical

values were computed from asymptotic distributions. We recorded, for each situation (the null and
the three different alternatives) the rejection frequencies of the different tests over theN = 2500
replications. Results, for different (alpha-stable) densities, are collected in Table4; more extensive
evaluations (β = l, l = 0 through20) are presented, for the Student and van der Waerden tests, in
Figure4.

Inspection of Table4 confirms that all rank-based tests appear to satisfy the 5% probability
level constraint. They are conservative in their original versions (particularly so for van der Waer-
den scores), hence slightly biased. This (hence, also theirpowers) could be improved, though, by
considering exact finite-sample critical values; such values easily can be obtained by sampling the
uniform distribution of ranks over then! permutations of(1, . . . , n). Rejection frequency rankings
are consistent with the corresponding ARE values.

A more intriguing fact is the apparent asymptotic validity-robustness of the Studentt test.
When the tail index is close to 2, this test seems to reach the 5% nominal size. This cannot be
true: indeed, Giné et al. (1997) showed that thet statistic is asymptotically normalif and only
if the observations are in the domain of attraction of the Gaussian distribution (actually, they
show this for the location problem, but their result is very likely to hold also in the present case).
The QQ plots of Figure3 further confirm the impression thatt tests under stable densities are
increasingly conservative, hence increasingly biased asα decreases. We could not find in the
literature any theoretical confirmation of that fact—see, however, Efron (1969) and Jensen (1979)
for some hints. The QQ plots in Figure3 were obtained from 10,000 replications of i.i.d. samples
(n = 1, 000) of stable observations for various values ofα andβ = 0; the same regressors were
used throughout.

Now, even if Student tests were valid at usual probability levels, this does not imply that they
are providing any recommendable testing procedure in this context. The bar charts in Figure4
and the power curves in Figure4, where their rejection frequencies are compared to those ofthe
corresponding van der Waerden tests, show that, although Student tests apparently have the right
probability level under the null, their powers are miserable—unless, of course,α is close to two.
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density l density l
test 0 1 2 3 0 1 2 3
φvdW .0416 .1728 .3968 .5824 .0420 .2324 .6116 .8728
φW .0488 .2600 .5712 .7724 .0484 .3176 .7700 .9564
φL α = .5 .0500 .5992 .9032 .9780 α = .85 .0476 .4600 .9084 .9908
φC β = 0 .0496 .5304 .8576 .9500 β = 0 .0472 .4304 .8744 .9740

φ1.6;0 .0532 .2916 .6180 .8120 .0516 .3568 .8224 .9720
φt .0164 .0244 .0240 .0204 .0288 .0344 .0516 .0872

φvdW .0416 .2004 .4204 .6164 .0408 .2484 .6452 .8836
φW .0500 .2784 .5784 .7752 .0428 .3388 .7752 .9580
φL α = .5 .0484 .3236 .6980 .8812 α = .85 .0472 .3520 .8136 .9716
φC β = .4 .0480 .1856 .3956 .5480 β = .4 .0492 .1932 .5124 .7632

φ1.6;0 .0508 .3124 .6444 .8244 .0476 .3744 .8300 .9772
φt .0196 .0224 .0196 .0212 .0360 .0420 .0528 .0764

φvdW .0396 .3472 .6668 .8176 .0424 .3488 .8020 .9604
φW .0448 .2732 .5992 .7684 .0476 .3216 .7748 .9524
φL α = .5 .0448 .1028 .2224 .4036 α = .85 0496 .1784 .5248 .8188
φC β = .99 .0420 .1880 .2120 .1776 β = .99 .0480 .0500 .0544 .0780

φ1.6;0 .0428 .2280 .5396 .7336 .0488 .2884 .7444 .9452
φt .0136 .0224 .0192 .0252 .0328 .0376 .0424 .0688

φvdW .0424 .3964 .9208 .9968 .0340 .4488 .9556 .9996
φW .0512 .4580 .9540 .9992 .0416 .4848 .9660 .9996
φL α = 1.6 .0516 .3724 .9004 .9972 α = 1.8 .0428 .3740 .9028 .9984
φC β = 0 .0488 .2788 .7400 .9624 β = 0 .0440 .2392 .7044 .9520

φ1.6;0 .0580 .4864 .9624 .9996 .0432 .4880 .9680 .9996
φt .0436 .2700 .6948 .8700 .0468 .4052 .8720 .9692

φvdW .0396 .3972 .9208 .9988 .0364 .4436 .9600 1.000
φW .0440 .4512 .9548 1.000 .0444 .4860 .9724 1.000
φL α = 1.6 .0492 .3568 .8952 .9956 α = 1.8 .0508 .3832 .9024 1.000
φC β = .4 .0552 .2164 .6476 .9228 β = .4 .0536 .2120 .6616 .9312

φ1.6;0 .0460 .4676 .9628 1.000 .0468 .4944 .9752 1.000
φt .0464 .2836 .6848 .8748 .0468 .4064 .8844 .9664

φvdW .0392 .4404 .9504 .9992 .0372 .4408 .9728 1.000
φW .0492 .4584 .9532 .9992 .0400 .4624 .9768 1.000
φL α = 1.6 .0524 .3332 .8684 .9948 α = 1.8 .0480 .3440 .8976 .9976
φC β = .99 .0500 .1352 .4172 .7512 β = .99 .0464 .1736 .5440 .8708

φ1.6;0 .0552 .4392 .9472 .9988 .0408 .4608 .9676 1.000
φt .0440 .2824 .7120 .8664 .0496 .3916 .8800 .9696

φvdW .0488 .5028 .9836 1.000
φW .0544 .5048 .9816 1.000
φL α = 2 .0512 .3728 .9032 .9968
φC .0564 .2096 .6284 .9420

φ1.6;0 .0604 .4812 .9740 1.000
φt .0580 .5540 .9888 1.000

Table 2: Rejection frequencies (out of2, 500 replications), under the null(l = 0) and under
alternatives (l = 1, 2, 3), of the van der Waerden testφvdW , the Wilcoxon testφW , the Laplace
test (the sign test)φL , the Cauchy testφC, the testφ1.6;/0 which is optimal at the stable distribution
with α = 1.6 andβ = 0, and the Student testφt.
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Figure 2: Power curves of the van der Waerden (solid line) andStudent (dotted line) tests com-
puted from 10,000 replications for various symmetric stable errors. Sample size isn = 100 and
regression constants are drawn from the uniform distribution on[−5, 5].
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Figure 3: Normal QQ plots of the Student statistic obtained from 10, 000 replications under the
null hypothesis of no slope and various symmetric stable distributions:α = .5, .8, 1.2, 1.5, 1.8, and
2, respectively from the top-left corner to the bottom-right corner. The sample size isn = 1000
and the regression constants are filtered (with a GARCH(1,1)) S&P500 daily returns from 2004 to
2008.

13



level (0) power (1) power (2)

alpha=.5

Stu/VdW

p
o
w

e
r

0
.0

0
.4

0
.8

level (0) power (1) power (2)

alpha=.8

Stu/VdW

p
o
w

e
r

0
.0

0
.4

0
.8

level (0) power (1) power (2)

alpha=1.2

Stu/VdW

p
o
w

e
r

0
.0

0
.4

0
.8

level (0) power (1) power (2)

alpha=1.5

Stu/VdW

p
o
w

e
r

0
.0

0
.4

0
.8

level (0) power (1) power (2)

alpha=1.8

Stu/VdW

p
o
w

e
r

0
.0

0
.4

0
.8

level (0) power (1) power (2)

alpha=2

Stu/VdW

p
o
w

e
r

0
.0

0
.4

0
.8

Figure 4: Rejection frequencies of the Student test (black)and the van der Waerden test (white)
obtained from10, 000 replications under the null hypothesis of no slope (0) and local alternatives
((1) and (2)) for various symmetric stable distributions:α = .5, .8, 1.2, 1.5, 1.8, and 2, respec-
tively, from the top-left corner to the bottom-right corner. The sample size isn = 1000 and the
regression constants are filtered (with a GARCH(1,1)) S&P500 daily returns from 2004 to 2008.
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5 Conclusions and discussion.

This paper provides a study of the asymptotic properties of rank-based tests for the general linear
model with stable errors. Being distribution-free, rank-based tests are validity-robust. That is, for
any values of the tail indexα and the skewness parameterβ, exact finite-sample critical values can
be computed, whereas the test statistics are asymptotically chi-square under the null, uniformly in
α andβ.

Using the LAN property of the model, we were able to obtain theasymptotic distribution of
our test statistics under local alternatives. We compare them using asymptotic relative efficien-
cies. Besides the usual rank-based statistics (van der Waerden, Wilcoxon and Laplace), we also
show how to construct new ones that are optimal under some prespecified stable density (while
remaining valid under any density). ARE calculations and Monte-Carlo experiments show that the
traditional parametric tests (essentially the Student test, the validity of which remains an unsolved
conjecture) are severely outperformed by the rank-based ones—particularly for small values of the
tail indexα.

Rank-based methods also can be considered for estimation purposes, hopefully with the same
good performances as in testing problems; such estimation methods are the subject of ongoing
research.

6 Appendix

6.1 Appendix A: Proofs

Proof of Lemma 2.1. Consider an admissibleθθθ with tail parameterα < 2. From (2.3), we get

cθθθ = lim
x→∞

1 − Fθθθ(x)

x−α
= lim

x→∞

−fθθθ(x)

−αx−α−1
= lim

x→∞

−ḟθθθ(x)

α(α + 1)x−α−2
,

where the last two equalities hold via Hospital’s rule. Hence, if 1 − Fθθθ(x) = O(x−α) for largex,
thenfθθθ(x) = O(x−α−1) andḟθθθ(x) = O(x−α−2). The assertion follows. �

Proof of Proposition 3.1. Theorem 12.2.1 in Lehmann and Romano (2005) entails that the
sequence of models is ULAN (hence, a fortiori, LAN) if

(i) θθθ 7→ fθθθ(x) is continuously differentiable, with gradient vector∇θθθfθθθ(x), for almost everyx;

(ii) the Fisher information matrixΓ(θθθ) := Eθθθ [(∇θθθ log fθθθ(Xi))(∇θθθ log fθθθ(Xi))
′] is finite, and

the mappingθθθ 7→ Γ(θθθ) is continuous.

In our context, (i) is trivially satisfied. As for (ii), one easily sees that it suffices to show that∫∞
M (ḟα,β(x)/fα,β(x))2f(x)dx < ∞, for M large. This last assertion results directly from Lemma

2.1. This concludes the proof. �

Proof of Proposition 3.2. (i) Since∆
(n)
θθθ (βββ) and∆

(n)
J (βββ) both are sums of i.i.d. terms, the

Central Limit Theorem yields
(

∆
(n)
J,θθθ (βββ)

τττ ′∆∆∆
(n)
θθθ (βββ)

)
L−→ N

((
0

0

)
,

(
σ2

1IK ΣΣΣ12

ΣΣΣ′
12 σ2

2

))
, (6.1)
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underH(n)
θθθ (βββ), where

σ2
1 := J (J) =

∫ 1

0
J2(u)du, σ2

2 = τττ ′τττI(θθθ),

and

ΣΣΣ12 :=

(∫ 1

0
J(u)φθθθ(F

−1
θθθ (u))du

)
τττ . (6.2)

Le Cam’s Third Lemma together with the asymptotic equivalence (3.7) immediately yields the
desired result. As for part (ii) of the proposition, it is a direct consequence of part (i). �

6.2 Appendix B: Numerical calculations with stable densities

For the sake of completeness, we provide here the various integral formulas for stable densities (in
Zolotarev’s parameterization) that have been used throughout. Assuming thatα 6= 1, let (recall
the notationζ = ζ(α, β) := −β tan(πα/2))

θ0 := θ0(α, β) = − 1

α
arctan(ζ), c1(α, β) :=

{
1
π (π

2 − θ0) if α < 1
1 if α > 1,

and

g(θ;x, α, β) = (x − ζ)α/(α−1)(cos αθ0)
1/(α−1)

×
(

cos θ

sinα(θ + θ0)

)α/(α−1) cos(αθ0 + (α − 1)θ)

cos θ
.

With that notation, one obtains (see Nolan 1997)

(i) fα,β(x) =
α

π|α − 1|(x − ζ)−1

∫ π/2

−θ0

g(θ;x, α, β)e−g(θ;x,α,β)dθ for x > ζ,

(ii) fα,β(ζ) = Γ(1 + 1/α) cos θ0/π(1 + ζ2)1/2α and, by symmetry,

(iii) fα,β(x) = fα,−β(−x) for x < ζ;

hence,

(iv) Fα,β(x) = c1(α, β) +
sign(1 − α)

π

∫ π/2

−θ0

e−g(θ;x,α,β)dθ for x > ζ,

(v) Fα,β(x) = 1 − Fα,β(−x) for x < ζ, and

(vi) Fα,β(ζ) =
1

π
(
π

2
− θ0).

Integral expressions for the derivatives of stable densities readily follow. Indeed, interchanging
derivatives and integrals in (i) yields, for givenx > ζ,

ḟα,β(x) =
1

(α − 1)(x − ζ)
(6.3)

×
(
fα,β(x) − α2

π|α − 1|(x − ζ)

∫ π/2

−θ0

g(θ;x, α, β)2e−g(θ;x,α,β)dθ
)
.
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Similarly, for x < ζ, we getḟα,β(x) = −ḟα,−β(−x), and, taking the limit asx → ζ,

ḟα,β(ζ) = Γ(1 +
2

α
) sin(2θ0)/2π(1 + ζ2)1/α.

These expressions allow us to compute

J (J,θθθ) =

∫ 1

0
J(u)ϕθθθ(F

−1
θθθ (u))du =

∫ ∞

−∞
J(Fθθθ(v))ḟθθθ(v)dv

for any closed-form score functionJ .
On the one hand, the integrands associated with Wilcoxon andCauchy scores are sufficiently

well-behaved (at least, whenα is “not too close to one”, i.e.|α − 1| ≥ 0.05) for straightforward
numerical evaluation. The corresponding computation for Laplace scoresJL is even easier, since
one can show that, in that case,

J (JL , θθθ) = 2
√

2fα,β(F−1
α,β(0)).

On the other hand, computations for van der Waerden scores are more delicate due to the
oscillating nature of the integrands. A computational remedy to this numerical instability con-
sists in restricting the domain of integration to a finite interval in order for numerical integration
algorithms to converge. Our numerical experience indicates that, setting

˜̇
fθθθ(z) = ḟθθθ(z)1{ḟθθθ(z)≥10−8}

suffices for stabilizing the integral, whereas the loss incurred by this modification into˜̇fθθθ of ḟθθθ

appears to be negligible.
The cross-correlation quantities for AREs for general stable scores are more complicated to

derive for stable scores with general skewness and tail parameter. Indeed, computing

J (θθθ1, θθθ2) =

∫ 1

0
ϕθθθ1

(F−1
θθθ1

(u))ϕθθθ2
(F−1

θθθ2
(u))du

requires integrating the quantile function of a stable distribution. Despite the rather surprisingly
robust character of the integrals in (iv), numerical inversion is the only way to obtain the corre-
sponding quantile functions; our numerical evaluations ofthe corresponding AREs therefore rely
on the integral approximations

J (n)(θθθ1, θθθ2) =
1

n + 1

n∑

j=1

ϕθθθ1

(
F−1

θθθ1

(
j

n + 1

))
ϕθθθ2

(
F−1

θθθ2

(
j

n + 1

))
. (6.4)

Takingn ≥ 104 in (6.4) yields an absolute error which is less than10−3.
The programs performing those evaluations have been written in Mathematica 5, and are avail-

able at the url: http://homepages.ulb.ac.be/∼yvswan/. These programs make use of Mathemat-
ica’s powerful numerical evaluation abilities to compute the different integrals reliably, although
some of the computations are rather time-consuming. For more advanced results on computational
issues with stable densities, tails and quantiles, we referto Rimmer and Nolan (2005).
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