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Abstract

Linear models with stable error densities are considerdé.|ldcal asymptotic normality
of the resulting model is established. We use this resuttained with Le Cam'’s third lemma,
to obtain local powers of various classical rank tests (@tn’s and van der Waerden’s test,
the median test, and their counterparts for regression maigisis of variance) under-stable
laws. The same results are used to construct new rank tdseyag parametric optimality
at specified stable densities. A Monte-Carlo study is cotatlito compare their relative
performances.

Keywords : Stable distributions, local asymptotic normality, ranktse asymptotic relative effi-
ciencies.

1 Introduction.

Due to their attractive stochastic propertiesable distributions(also calleda-stablg are ex-
tremely appealing from the point of view of stochastic méidgl They are, indeed, the only
nondegenerate distributions with a domain of attractiomtrnvial limits of normalized sums of
independent identically distributed terms are necegsstdble. They moreover constitute a quite
flexible four-parameter family, beyond location and sctiey also account for tail behavior and
asymmetries.

Empirical evidence of non-Gaussian stable behavior isepiteim a variety of fields, among
which economics, insurance, finance, signal processitefraéfic engineering, ... In all those
fields, neglecting heavy tail and asymmetry features leadmterestimating risks, sometimes
quite significantly, hence taking adventurous decisioas plassibly induce severe losses. Student
families (generally with three degrees of freedom or mdrmef ts, with finite moments of order
two) therefore are quite popular in such areas; StudenttiEdhrowever, do not enjoy the stability
property, and their tails often are still too light, failing provide a reasonable account of many
stylized facts. Stable distributions, often referred tetable Paretiardistributions in the financial
literature, are among the most frequently proposed catetidar describing the distribution of
stock returns: see Fama (1965a and 1965b), Mandelbrot 8@k et al. (1998, 2000), etc.



Despite their attractiveness, however, stable distiimgtiin all those areas, still remain largely
absent from daily practice. While acknowledging the faeit thbserved data do exhibit heavy-
tailed and skewed behavior, most practitioners stick tesital statistical and econometric meth-
ods. The reason for that somewhat schizophrenic attitudieapty originates in a lack of well-
documented statistical and econometric procedures foelaavolving stable densities, and the
widespread opinion that they are hardly tractable.

That opinion is, to a large extent, unfounded. Contrary terg ecommon belief, stable families
are extremely well-behaved. DuMouchel (1973) long time stgowed that maximum likelihood
estimators of the parameter of stable distributions arenpsgtically normal, at standard root-
n rate. Pushing his results a bit farther, it can be seen thhtesfamilies actually aréocally
asymptotically normalLAN) in the Le Cam sense, so that their asymptotic strucactally
resorts to the familiar Gaussian shift type—the most regatal classical statistical experiment
one can think of.

Now, putting local asymptotics and likelihood methods iptactice is not so straightforward.
The main drawback of stable densities, from an appliedstizdiperspective, indeed, is the lack of
closed-form expressions for likelihoods, hence for theg-tierivatives, the corresponding max-
imum likelihood estimators, likelihood ratio statistiedc. That lack of closed-form expressions
is probably the main reason why practitioners remain rahtcabout stable error distributions.
The advent of powerful and user-friendly symbolic calomatsuch as Mathematica, however, has
transformed the lack of closed-formulas from a major hindeainto a mere technical nuisance
(see Boralet al. (2005) for an overview). Under the impulsion of Zolotarewlah, and a few
others, a number of computationally efficient integral fatas for stable distributions have been
derived over the years (Zolotarev (1986 and 1995), Nolaf7{l#hd 1999)). These formulas are
at the heart of the numerical results which are in the prgsaper.

The absence of moments, on the other hand, makes asymptuierfles hard to derive, and a
number of important problems still remain open. Among thera full description of the asymp-
totic behavior of Student'sstatistic for location (see for instance the remarkableepapy Logan
etal. (1973) and Gin&t al. (1997)). Somewhat surprisingly, little is kown about theveo (under
stable densities) of this statistic, a problem which, tolibst of our knowledge, only has been
considered by Benktust al. (2007). This lack of results on performances or asymptaidop-
mances, as a rule, makes it difficult to convince practitisrie adopt any particular method rather
than any other one.

Alternatives to likelihood-based methods do exist, thqughich all too often are ignored.
Fama and Roll (1968) for symmetric stable distributionshvidil indices between 1 and 2, and
Press (1972) for general values, provide consistent estimators. A quantile-baggtoach pro-
posed by Fama and Roll (1971) and further enhanced by Mc€ul[®986), and the method of
indirect estimation described in Gar@aal. (2010) are the most commonly used. Estimation in
regression models with symmetric stable errors has alsp beeelied, either empirically (Blat-
tberg and Sargent (1971)) or theoretically (El Barmi andshel(1997)). More recently, Andrews
et al. (2009) study the case of autoregressive time series (botsatand noncausal) with non-
Gaussian stable noise and show that, in that model, whilegtimators of the parameters of the
stable noise are again rootasymptotically normal, those for the autoregressive patara are
nl/®-consistent and converge in distribution to the maximiZex mndom function.

Another alternative in the context are ranks. Rank-basatdads, which are distribution-free,
and therefore valid under arbitrary densities, naturadigne into the picture in the context. Yet,
nobody, it seems, ever considered them. An explanationtrbghagain, the absence of power or
asymptotic efficiency results.



The objective of this paper is twofold:

(i) establishing the local asymptotic normality (LAN) ohéiar models witlw-stable error dis-
tributions (that model includes two-sample location, @er analysis of variance, and re-
gression models with unspecified intercept); that LAN resettles the parametric efficiency
bounds for the problem and, combined with Le Cam’s third lemafiows us to obtain local
powers and asymptotic relative efficiencies for a varietinfdrence procedures, including
traditional rank tests (Wilcoxon, van der Waerden or sigtsie

(i) analyzing the asymptotic performances of classicakigsts and deriving new ones (Cauchy
or a-stable score tests) adapted to stable error distributions

Section2 presents some properties of stable distributions, andgefed result on the asymp-
totic behavior of stable score functions, to be used in tiggale Section 3.1 establishes the local
asymptotic normality property we need to study local asytipipowers. Section 3.2 studies the
performances of classical rank tests in the stable confesytimptotic relative efficiencies are con-
sidered in Section 3.3, not only for the classical rank tdstsalso for some new rank-based tests
achieving the parametric efficiency bounds at some spedifadale densities. Numerical values of
those AREs are provided. A simulation study is conducteckictiSn4, while concluding remarks
are given in Sectiob. An appendix collects the proofs.

2 Stable distributions: some properties

Denote byfy or f, s-,s the a-stable density function with parametr= («, 3,7, ). Writing
fa,s for the standardized densitf, 10, we have

1 r—30
frso ) = 2 (). @)
which characterizes the roles &and~ as location and scale parameters, respectively. The inter-
pretation of as askewness parametes justified by the fact that, fof = 0, the distribution is
symmetric about and, forg = 1 (resp.,5 = —1), the distribution is totally skewed to the right
(resp. to the left). The notatiofy and F, 5 -,s Will be used for the corresponding distribution
function.

Certain choices of yield well-known distributions, namely the Gaussian £ 2, any ),
the Cauchy ¢ = 1 and = 0) and the Lévy & = 1/2 and3 = 1). However, together with
the reflection of the Lévy distribution, these are tiy instances of stable distributions whose
density functions can be written explicitly in terms of ekmtary functions. For all other choices
of the parameters, there exist no closed formfgrand stable distributions are either defined in
terms of the inverse Fourier transform of their charadierisinctions, or in the form of integral
formulas (see e.g. Nolan (1997) or Zolotarev (1986)).

A number of alternative parameterizations have been peaposthe literature, each having
its own advantages and some drawbacks (see Nolan (2010) éveaview). In the sequel, we are
working with Zolotarev’s so-called/-parametrization, under which the logarithm of the charac-
teristic functiong(t; o, 8,7,0) of fo g.~,5 is defined as

itd — [yt|* (1 — i¢sign(t)(|v¢) > = 1)) ifa #1,

: s : (2.2)
itd — |vt|* (1 +ifsign(t)(2/7) log |vt]) ifa=1,

log ¢(t; v, 8,7,0) := {



with ¢ := (o, §) := —ftan(ra/2). Note that, in this parameterizatiof, g(z) = fo,—5(—2)
for z > ¢ and all admissibl¢x, ).

It is well-known that“all (hon-degenerate) stable distributions are contingodistributions
with an infinitely differentiable density(Theorem 1.9 in Nolan (2010)). Hence, fro&]), these
distributions also are continuously differentiable in theation parametef. The tail behavior of
these distributions is given, foz| — oo, by

1~ Fy(ja]) ~ Colz| ™, (23)

whereCy is a constant depending érand the sign of:. Relation @.3), by the way, justifies the
terminologytail index for the parametes.. Using @.3), we can further prove the following (see
the Appendix for a proof).

Lemma 2.1 Define, for all admissibl@, the score functionpg(z) := — fy()/fe(z). Then, for
all « < 2, pg(x) = O(1/x) asz — oo.

For an overview of other properties of these distributiopse for instance Feller (1971),
Samorodnitsky and Taqqu (1994) or Nolan (2010).

3 Rank-based tests for linear models under stable noise.

Denote byH.™" (8) the hypothesis under which a vec®™ := (X\™,... X{"Y of observa-
tions satisfies the equation

K
XM =a+ Y g+, i=1,.n, (3.1)
k=1
for somea € R, wherecz(f), . ,cﬁ}?, i =1,...,n are regression constanf$,= ((1,...,0x)’
are the regression parameters aﬁa, i = 1,...,nis a sequence of i.i.d. errors with stable

density fo, wheref = («, 3,7,0) € ©.

This model (which encompasses the two-sample and one-facttysis of variance models)
is of obvious theoretical and practical importance, andaitalysis, under second-order moment
assumptions, is covered in all standard statistical t@kbo Yet, the stable case, with infinite
variances, remains much less explored. In particulartivels little is known about the efficiency,
under stable densities, of testing procedures for the rypibtmesisHé") (B). In this paper, we
are providing such efficiency results for the class of raakdd tests. Such tests indeed naturally
come into the picture, as their validity extends to compyetmspecified error densities, among
which the stable ones, irrespective of the actual values Gfand-.

3.1 Local Asymptotic Normality

The main theoretical tool throughout will be the local asyotip normality ( LAN) property of
the regression modeB(1) under stable error densities. Such a property, which isdépendent
interest, has never been considered, to the best of our kdge] in the context of stable error
distributions. ,
Letting E,(f") =n 1Y cz(.,:f), cl(-") = (cgl), o ,cg?)’, cm = p=t3 cl(")cl(-"), and

K™ .= ((C(”))_I/Q, suppose that the following technical assumptions ardlédfi
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AssuMPTION(A1) Foralln € N, C™ is positive definite and converges,ras+ oo, to a positive
definite matrixK =2,

AssuMPTION (A2) (Noether conditionsFor allk = 1,..., K, one has

i | (40 =)'/ 32 (48 ) | <o

Denote byP{") ; the probability distribution oX (™) under @.1), and let

K

zMB) =x" —a-Y B (i=1,...,n), i=1,...n

be the residual for the valyg of the parameter: undéf( ) theZ(") (B)'s are i.i.d. with density
f(a,8,,0)- The following then holds (see the Appendlx for a proof)

Proposition 3.1 (LAN) Suppose that Assumptions (A1) and (A2) holdvie} := n~3K® and
fix8 = (o, 3,7,0) € ©, a € R. Then, model3.1), with parameter3 ¢ RX, is LAN. More
precisely, for all3 € RX, and all bounded sequene&”) € RX,

n

p™ [1/0 (2" (8+vin)r™))

(n) L 0.a.8+v(n)r(m) t=1
o g = 108 o) s - (n)
s 15 (2" ®)
t=1
= A (B) — T TII0) + op(1)
under HyV(8) as m — oo, where, setting gp(-) = —fa(-)/fo(-) and

N

Z(0) == [ v3(x) fo(x)dz, I()Ik is the information matrix and

A B) =2 (k)3 o (27(8)) o £ N(0.Z(0) L), (3:2)
1=1

the central sequence.

The LAN property is stated here under stable distributidms,actually holds, with information
matrix Z;(8)Ix and central sequencza;") (B), for a much broader class of densitfesA suffi-

cient condition is the mean-square differentiability f3f2 (see, e.qg., van der Vaart (2000)). The
information matrix and the central sequence then take thedarm as in Propositio.1, but
with scorey of the formy; = —2sf~1/2 wheres stands for the mean square derivativefof2.

Local Asymptotic Normality is the key result allowing us ttudy the asymptotic behavior
of rank-based tests under stable densities via the powmdahinery of the asymptotic theory of
statistical experiments associated with the name of Le @Gandéscribed, for example, in Le Cam
and Yang (2000), van der Vaart (2000) or Lehman and Romar@bjR0The application of that
theory, however, here is not as straightforward as usualtathe fact that the central sequence
Aé,") (B) and the information quantitf (@), for general values ok and 3, cannot be expressed
under closed form.



3.2 Rank-based tests when the intercept is a nuisance paratee

Consider the problem of testing the null hypothe&i€” (3,) under whichd = S, in (3.1),
wheref,, is some fixed reak-vector, while the constant termand the density oél(."), hence
that ofa + eE") remain completely unspecified. Denote B)(f) the rank onZ.(") (8,) among
Zf”) (Bo). - .., Z{(B,); note that this rank does not depend on the unspecified @garc

The idea of using ranks in that context is quite natural,ipaerly so when heavy tails are

suspected. The vect®™ = R™(B,) = (R\™,...,R") is not only distribution-free un-
der the null hypothesig((" (,BO) it is maximal mvarlant under a generating group?df” (By)-
Distribution-freeness makes it possible to construct +laaded tests with exact finite-sample crit-
ical values, while maximal invariance allows achievinggmetric efficiency at some selected
reference density (see Hallin and Werker (2003)).

The rank-based statistics we are considering are of the form

(n)
Sy Y

whereJ : (0,1) — R is some score-generating function satisfying

ASSUMPTION (B) The score-generating functioh : (0,1) — R is not constant, and the dif-
ference between two non-decreasing monotone functipns(0,1) — RandJ, : (0,1) — R
which are right-continuous and square-integrable.

The vector A (}‘) (B,) has the same structure as the central sequén2e Actually, letting
’ n
AG(By) =% (K) 370 (F(27(80) ) el
i=1

whereF is the unspecified distribution function of taé”’s, the classical Hajek Projection The-
orem for linear rank statistics (see Hajek and Sidak (J@8Puri and Sen (1985)) implies that,
under Assumptions (A1), (A2) and (B),

A (By) — A (By) = op(1) asn — oo, underH™ (B,), (3.4)
and that moreover .
A (By) 5 N (0,7 (J)Ik) (3.5)
with J(J fo J?(u)du. Clearly, @.4) and the fact that central sequences are only defined up

to op (1 )s |mpIy that, for J(u) = Jg(u) := pp(F~1(u)), é(}‘ (By) is a rank-based version of
the central sequencza(”) (By)-
It also follows that, still unde# (™ (3,), the test statistic

Q 5 (By) = T(1) " AD (B (A" (By)) (3.6)

is asymptotically (central) chi-square wifki degrees of freedom, if moreover = J; and the
actual density of thel(")’s is f, then

QB = QB =TT AP B AP B +or(1) (37
= QY (By) + op(1),



WhereQEC") (B,) is the test statistic yielding, under error densftythelocally asymptotically max-
imin test forH(™(B,) (see, e.g. Section 11.9 of Le Cam (1986))—a property the testkoased
on Q@ Sc")(ﬂo), in view of (3.7), automatically inherits, with the substantial additibadvantage,
though, that, unlike;)&"’ (By), it is distribution-free under the null, irrespective oethctual un-
derlying density, be it a stable density.

Finally, consider a local alternative of the forfiy + n~'/27. A standard application of Le

Cam’s third lemma (see van der Vaart (2000)) yields the falg result (see the Appendix for a
proof).

Proposition 3.2 Set7(J,0) := fol J(u)we(Fo‘l(u))du, and let Assumptions (Al), (A2) and (B)
hold. Then, undet"” (8, + n~27), asn — oo,

i) A" (8y) = N (I(J.0)r, T (J)Ik)), and

(i) Q (n) (B,) is asymptotically noncentral chi-square, witti degrees of freedom and non-
centrality parametet't 7%(J,0)/J (J).

Here again, the results are stated for stable densitieshdbdtfor all densitiesf for which the
model is locally asymptotically normal.

3.3 Local powers and asymptotic relative efficiencies.

The validity of the tests3.6) extends to any underlying error density irrespective efehoice of
scoreJ(-). Moreover, under stable densify, such a test, with score function

Jo(z) = —fo(Fy ' (2)/ fo(Fy ' (), (3.8)

will be asymptotically optimal. The applicability of thigpmality result is, however, hampered
by the (theoretical and practical) difficulties implied betfact that the parametefisof stable
distributions in applications are unknown, and are notgastimated. It may be more interesting,
therefore, to dispose of valid tests whose power is knowrettnibt too bad” for a broad range
of  values, and hence do not require estimatiofl.of he objective of this section is to describe
some of such tests and to compare their powers, by meansioafymptotic relative efficiency
(ARE).

Some of the most common rank-based tests are those reagdtinmlity under the Gaussian,
the logistic and the double-exponential distributions, spextively; they are
known as the van der Waerden, Wilcoxon and Laplace testsbased on the score-generating
functions

Ji(z) = &7 (2), Jao(z) = %(235 —1), andJs(z) = v2sign(F~1(x)), (3.9)
where ® denotes, as usual, the cdf of the standardized normalldison, andZ' that of the
double-exponential distribution with variance 1. One dfirse may like to choose the scorés
associated (se& ) with the stable densityy. For instance, setting = (1,0, 1,0) yields the
Cauchy score-generating function

Jy(z) = sin(27(xz — 1/2)). (3.10)



The only other stable distribution for which the score-gatieg function can be written in closed
form is the Lévy distribution (i.ef = (.5,1, 1, 0)), with

Js(z) = V2 (@ ((x+1)/2))° (3 —2v2 (@7 ((x + 1)/2)).

For all other choices of tail indices, however, a numerielhation of.Jy is possible, characteriz-
ing new tests with good asymptotic properties under stsoskgwed and/or heavy-tailed errors.

Recall that asymptotic relative efficiency (ARE) betwee testing procedures is the limit,
if it exists, of the ratio of the sample sizes they need in ptdeachieve comparable asymptotic
performances. Obtaining such AREs is in general a diffi@gdktunless the model under study is
LAN. In the present case, denoting by ARE/ J ) the asymptotic relative efficiency, under stable
density fp, of the rank-based test based on the score-generatingdunttwith respect to the
rank-based test based on the score-generating funéfitive following result holds.

Proposition 3.3 Let.J and.J be two score-generating functions satisfying Assump&nThen,
AREy(J/J) = T*(J.0)T (])/T*(J,6)T(J). (3.11)

Numerical evaluations of3(11) is all but trivial, but can be obtained via inversion of thec
acteristic function2.2) and other techniques such as the Fast Fourier Transforhe @valuation
of complicated integral transforms such as those given iliN{L997). Details are discussed in
the Appendix.

Figurel provides plots of ARE values for the Wilcoxon, Laplace and&wg tests with respect
to the van der Waerden ones as functions of the tail irddmr a choice of values of the skewness
parameters ranging from 0 to 1. Note that these AREs are symmetri@,iso that there is no
need to consider negative values of the skewness parameter.

Turning to the optimal scores for stable densities with paitametersy = 1.6, 1.7, 1.8,
and 1.9, and skewness parametgfs= 0, 0.2, and 0.4, the AREs of the corresponding rank tests,
still with respect to van der Waerden'’s, are provided in &dblMore complete tables as well as
Mathematica and R programs performing the various nunlegiGduations can be found at the
addressittp://homepages.ulb.ac.bg/vswan/

Figure 1 reveals that fot3| close to 1, van der Waerden tests are uniformly most powerful
among the four tests under study. On the other hand, whenritbis @re symmetric, the three
other contenders appear to be more powerful than van demfaeexcept for tail parameters that
are very close to the Gaussian (at= 1.97), where van der Waerden regains leadership. Also
note that, near the symmetric cdge ~ 0, the Cauchy and the Laplace are doing extremely well
whena is close to 1, with the Cauchy test being best, as expectededer, foraa — 0, ARES
appear to become (a) arbitrarily close to zero in favor of danWaerden tests 48| — 1 and
(b) arbitrarily large in favor of Cauchy and Laplace testsjas» 0. Interestingly (b) does not
hold for the AREs of Wilcoxon with respect to van der Waerd@wtually, it can be shown that
the latter is uniformly less thafy/ 7, a limit which is attained under symmetiiestable densities
with o =~ 0.01. Finally note that, for fixedv > 0.5, all three ARE curves are strictly increasing
with 8. This also holds true for the first two whennears 0, whereas, in the Cauchy case, some
oscillation seems to occur.

As for Tablel, it shows that the optimal tests considered there outparf@n der Waerden'’s
under the stable density they were devised for, which is satprise, but also, quite interestingly,
under alternative values efandg (in the range of values considered there). The lack of geitgit
to variations of the skewness parametas particularly remarkable.


http://homepages.ulb.ac.be/~yvswan/recherche.htm

WilcoxonVanderWaerden

Laplace/VanderWaerden

Cauchy/VanderWaerden

— Beta<(
— Beta=(2
Beta=0.4
— Beta<06
Beta=0.8
— Beta=0.99

Figure 1: ARES of Wilcoxon, Laplace and Cauuchy with respeatan der Waerden as functions
of the tail indexq, for various values of the skewness paramgter

a=1.6 a =17 a=1.8 a=1.9

18] 0 0.2 0.4 0 0.2 0.4 0 0.2 0.4 0 0.2 0.4
a=1.6

0 1.2127 1.2045 1.17871.1332 1.1269 1.10751.0446 1.0407 1.02880.9444 0.9429 0.9386

0.2 1.2043 1.2129 1.20391.1277 1.1333 1.12561.0416 1.0447 1.03960.9433 0.9445 0.9428

0.4 1.1779 1.2033 1.21351.1100 1.12811 1.133}71.0320 1.0425 1.04500.9396 0.9438 0.9450
a=17

0 1.2010 1.1954 1.17721.1442 1.1394 1.12411.0756 1.0721 1.06150.9893 0.9879 0.9834

0.2 1.1942 1.2011 1.19621.1393 1.1444 1.13921.0727 1.0757 1.07140.9882 0.9894 0.9876

0.4 1.1731 1.1925 1.20171.1236 1.1387 1.14481.0631 1.0730 1.07590.9845 0.9886 0.9897
a=1.8

0 1.1645 1.1614 1.15111.1313 1.1284 1.11881.0878 1.0852 1.07711.0240 1.0226 1.0182

0.2 1.1600 1.1647 1.16281.1276 1.1315 1.12911.0852 1.0879 1.08521.0228 1.0240 1.0222

0.4 1.1465 1.1587 1.16541.1161 1.1267 1.13191.0767 1.0849 1.0881 1.0190 1.0231 1.0242
a=1.9

0 1.1005 1.0994 1.09571.0878 1.0867 1.08311.0704 1.0693 1.06561.0405 1.0394 1.0361

0.2 1.0988 1.1008 1.10061.0862 1.0880 1.08761.0689 1.0706 1.0698 1.0394 1.0405 1.0394

0.4 1.0937 1.0988 1.10191.0813 1.0860 1.08871.0643 1.0686 1.07091.0360 1.0393 1.0406

Table 1: AREs for tests based on stable scores with respeahtder Waerden’s. Rows correspond
to scores, columns to the (stable) densities under whichsfd®& computed. For instance, row 1
contains the AREs with respect to van der Waerden of the sssichon stable scores for= 1.6,

£ = 0, under stable densities with tail parameter 1.6 and skewness ranging from 0 through

0.4.



4 Monte Carlo simulations.

This section is devoted to the validation, through Montel@simulations, of the results obtained
in the previous sections. Our aim here is, on the one handrify the ARE rankings between the
proposed rank-based tests and, on the other hand, to cosymreéests with the classical Student
t-test whose behavior is well known to be (very) complicateddrive when confronted with an
a-stable universe (see, for instance, Efron (1969), Lagaal. (1973), or Ginéet al. (1997)).

We generatedv = 2500 samples from the regression models

v\ = ((1/20))ci + e, i=1,....,n=100, 1 =0, 1,2, 3, (4.1)
where the the;’s are i.i.d. with centered alpha-stable distribution. Tégression constants (i =
1,...,100) (the same ones across the 2500 replications) were drawntfre uniform distribution
on[—5,5].

Throughout, we performed the various tests at nominal lgelor the null hypothesis under
which the slopes of the model is equal to 0. Observatiol@éo) thus are generated under the null,

Yi(l), Yi(2) anin(?’) under increasing alternatives of the forin= 1/20, | = 1,2 and3. Critical
values were computed from asymptotic distributions. Weneed, for each situation (the null and
the three different alternatives) the rejection frequesaf the different tests over thé = 2500
replications. Results, for different (alpha-stable) dees are collected in Tabks more extensive
evaluations § = [, I = 0 through20) are presented, for the Student and van der Waerden tests, in
Figure4.

Inspection of Table} confirms that all rank-based tests appear to satisfy the Sfkapility
level constraint. They are conservative in their originadsions (particularly so for van der Waer-
den scores), hence slightly biased. This (hence, alsoptbeiers) could be improved, though, by
considering exact finite-sample critical values; suchesleasily can be obtained by sampling the
uniform distribution of ranks over the! permutations of1, ..., n). Rejection frequency rankings
are consistent with the corresponding ARE values.

A more intriguing fact is the apparent asymptotic validippustness of the Studenttest.
When the tail index is close to 2, this test seems to reach #tendminal size. This cannot be
true: indeed, Giné et al. (1997) showed that thstatistic is asymptotically normdll and only
if the observations are in the domain of attraction of the Gamsdistribution (actually, they
show this for the location problem, but their result is vekgly to hold also in the present case).
The QQ plots of Figure3 further confirm the impression thattests under stable densities are
increasingly conservative, hence increasingly biased decreases. We could not find in the
literature any theoretical confirmation of that fact—semyéver, Efron (1969) and Jensen (1979)
for some hints. The QQ plots in FiguBawere obtained from 10,000 replications of i.i.d. samples
(n = 1,000) of stable observations for various valuesnodnd g = 0; the same regressors were
used throughout.

Now, even if Student tests were valid at usual probabilitels, this does not imply that they
are providing any recommendable testing procedure in thigext. The bar charts in Figure
and the power curves in Figufe where their rejection frequencies are compared to thosieeof
corresponding van der Waerden tests, show that, althougle®ttests apparently have the right
probability level under the null, their powers are miseeablinless, of coursey is close to two.
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density l density l

test 0 1 2 3 0 1 2 3
Puaw .0416 .1728 .3968 .5824 .0420 .2324 .6116 .8728
ow .0488 .2600 .5712 .7724 .0484 3176 .7700 .956#4
oL a=.5 | .0500 .5992 .9032 .978Da =.85|.0476 .4600 .9084 .9908
¢c B=0 | .0496 .5304 .8576 .9500 s=0 | .0472 .4304 .8744 .9740
1.6:0 .0532 .2916 .6180 .812pD .0516 .3568 .8224 .9720
oy .0164 .0244 .0240 .020#4 .0288 .0344 .0516 .087p
Pvaw .0416 .2004 .4204 .6164 .0408 .2484 6452 .883p
ow .0500 .2784 5784 .775p .0428 .3388 .7752 .958D
oL a=.5 | .0484 3236 .6980 .881Pa =.85|.0472 .3520 .8136 .971p
oc g=.4 |.0480 .1856 .3956 .5480 p=.4 | .0492 .1932 .5124 .763P
?1.6,0 .0508 .3124 .6444 .8244 .0476 .3744 8300 .977p
oy .0196 .0224 .0196 .021p .0360 .0420 .0528 .076#4
Puaw .0396 .3472 .6668 .817p .0424 .3488 .8020 .960#4
ow .0448 2732 5992 .768#4 .0476 .3216 .7748 .9524
oL a=.5 | .0448 .1028 .2224 .403ba=.85| 0496 .1784 .5248 .8188
¢oc | 0=.99 | .0420 .1880 .2120 .17763=.99 | .0480 .0500 .0544 .078D
1.6:0 .0428 .2280 .5396 .733 .0488 .2884 7444 .945p
o .0136 .0224 .0192 .025 .0328 .0376 .0424 .0688
Puaw .0424 .3964 .9208 .996 .0340 .4488 .9556 .9996
ow .0512 4580 .9540 .999 .0416 .4848 .9660 .999

oL a=16|.0516 .3724 .9004 .997
oc B=0 | .0488 .2788 .7400 .962

a=181.0428 .3740 .9028 .998
=0 | .0440 .2392 .7044 .952

1.6:0 .0580 .4864 .9624 .999 .0432 4880 .9680 .999
oy .0436 .2700 .6948 .870 .0468 .4052 .8720 .969
Pvaw .0396 .3972 .9208 .998 .0364 4436 .9600 1.00
ow .0440 4512 9548 1.00 .0444 4860 .9724 1.00

oL a=16|.0492 .3568 .8952 .995
oc g=.4 | .0552 .2164 .6476 .922

o 8 | .0508 .3832 .9024 1.00
g=.4].0536 .2120 .6616 .931

OO PSP O NODOONO O FHFO

O O O WO WO NOWONINOO O WO OO0 &SI OO0 oro

b1.6:0 0460 .4676 .9628 1.00 0468 .4944 9752 1.00
b 0464 2836 .6848 .874 0468 4064 .8844 .966
Buaw 0392 4404 9504 .999 0372 4408 9728 1.00
dw 0492 4584 9532 .999 0400 .4624 9768 1.00
o | a=161.0524 .3332 .8684 .9948c = 1.8 | .0480 .3440 .8976 .997B
éc | B=.99 | .0500 .1352 .4172 .751p3=.99 | .0464 .1736 .5440 .8708
b1.6:0 0552 4392 .9472 .998 .0408 .4608 .9676 1.000
b 0440 2824 .7120 .866 0496 .3916 .8800 .969p
Puaw 0488 5028 .9836 1.00
dw 0544 5048 .9816 1.00
o | a=2 |.0512 .3728 .9032 .996
b 0564 .2096 .6284 .942
b1.6:0 0604 .4812 .9740 1.00
b 0580 .5540 .9888 1.00

Table 2: Rejection frequencies (out ®f500 replications), under the nulll = 0) and under
alternatives [( = 1, 2, 3), of the van der Waerden test -, the Wilcoxon testy, the Laplace
test (the sign test), , the Cauchy testc, the test, 4. which is optimal at the stable distribution
with o = 1.6 and3 = 0, and the Student tes.
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Figure 2. Power curves of the van der Waerden (solid line) Stodlent (dotted line) tests com-
puted from 10,000 replications for various symmetric stadirors. Sample size is = 100 and
regression constants are drawn from the uniform distdutin[—5, 5].
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Figure 3: Normal QQ plots of the Student statistic obtaimeadnf10, 000 replications under the
null hypothesis of no slope and various symmetric stabkeidigions: « = .5, .8, 1.2, 1.5, 1.8, and
2, respectively from the top-left corner to the bottom-tighrner. The sample size is = 1000
and the regression constants are filtered (with a GARCH($&P500 daily returns from 2004 to
2008.
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Figure 4: Rejection frequencies of the Student test (black) the van der Waerden test (white)
obtained from10, 000 replications under the null hypothesis of no slope (0) acdllalternatives
((1) and (2)) for various symmetric stable distributiors:= .5, .8, 1.2, 1.5, 1.8, and 2, respec-
tively, from the top-left corner to the bottom-right corndthe sample size is = 1000 and the
regression constants are filtered (with a GARCH(1,1)) S&Pddlly returns from 2004 to 2008
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5 Conclusions and discussion.

This paper provides a study of the asymptotic propertieamik4based tests for the general linear
model with stable errors. Being distribution-free, rardséd tests are validity-robust. That is, for
any values of the tail index and the skewness parameteexact finite-sample critical values can
be computed, whereas the test statistics are asymptptadatsquare under the null, uniformly in
« andg.

Using the LAN property of the model, we were able to obtaindkgmptotic distribution of
our test statistics under local alternatives. We compagethsing asymptotic relative efficien-
cies. Besides the usual rank-based statistics (van derdéfaevVilcoxon and Laplace), we also
show how to construct new ones that are optimal under sonspgcéied stable density (while
remaining valid under any density). ARE calculations andchideCarlo experiments show that the
traditional parametric tests (essentially the Student ties validity of which remains an unsolved
conjecture) are severely outperformed by the rank-bases-eparticularly for small values of the
tail indexa.

Rank-based methods also can be considered for estimatipngas, hopefully with the same
good performances as in testing problems; such estimatithads are the subject of ongoing
research.

6 Appendix

6.1 Appendix A: Proofs

Proof of Lemma 2.1 Consider an admissibfwith tail parametery < 2. From @.3), we get

—folx) _ —fo(x)

1= Fy(x)
o = xh_{& - -0 = :Bh_{& —ar——1 T 255 a(a + l)x—a—27

where the last two equalities hold via Hospital's rule. Haritl — Fp(z) = O(z~) for largex,
thenfy(z) = O(z=2~!) and fp(x) = O(z~*~2). The assertion follows. O

Proof of Proposition 3.1 Theorem 12.2.1 in Lehmann and Romano (2005) entails tleat th
sequence of models is ULAN (hence, a fortiori, LAN) if

(i) 8 — fy(x) is continuously differentiable, with gradient vectgp fo (), for almost everyt;

(i) the Fisher information matriX'(9) := Eg [(Vg log fo(X:))(Vg log fa(X;))'] is finite, and
the mappind — I'(8) is continuous.

In our context, (i) is trivially satisfied. As for (i), one sity sees that it suffices to show that
St (fa,3(®)/ fa,5(x))* f(x)dz < oo, for M large. This last assertion results directly from Lemma
2.1 This concludes the proof. O

Proof of Proposition 3.2 (i) SinceAé") (B) and AS") (B) both are sums of i.i.d. terms, the
Central Limit Theorem yields

AR
<T/A§,")(ﬁ)> MUo ) Umy o)) ey
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underHé")(ﬂ), where

1
o} =J(J) = / J2(u)du, o3 =T7'TI(8),
0

and )
Sy ( / J(u)QSg(Fe_l(u))du) r 6.2)
0
Le Cam’s Third Lemma together with the asymptotic equivede®.7) immediately yields the
desired result. As for part (ii) of the proposition, it is aetit consequence of part (i). O

6.2 Appendix B: Numerical calculations with stable densites

For the sake of completeness, we provide here the varioegraitformulas for stable densities (in
Zolotarev’s parameterization) that have been used thmutghAssuming thaty = 1, let (recall
the notation{ = ((a, 3) := — B tan(mwa/2))

(5 —0o) ifa<l
if a>1,

0 := 0o, B) = —éarctan(o, c(e, f) = {

and

g(0;z,a,8) = (z— )@ D (cosaby)/ @D

cos 6 o/e=1) cos(afy + (a — 1))
sina (6 + 6y) '

cos 0

With that notation, one obtains (see Nolan 1997)

w/2

O fasle) = @ =07 [ altsaa pe i ora >

(i) fa.5(¢) =T(1+ 1/a)cos by /n(1 + ¢2)/?* and, by symmetry,
(”l) foz,ﬁ(l') = fa,—ﬁ(_‘r) forz < ¢

hence,
; o w/2
(iv) Fpp(z)=ci(a,fB)+ M/ e~ 90z B)qg for z > ¢,
T —0o
(V) Fop(x) =1—F,g(—x)forz < ¢, and

1 7

() Fas(Q) = —(5 = o).

Integral expressions for the derivatives of stable desssiteadily follow. Indeed, interchanging
derivatives and integrals in (i) yields, for given> ¢,

; 1
fepl®) = @0 (6.9
2 /2
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Similarly, for z < ¢, we getf, s(z) = —fa._s(—2), and, taking the limit as — ¢,

fap(Q)=T(1 + ’ ~)sin(260)/2m (1 + Ve,

These expressions allow us to compute

7(7.6) /J wa(F, du—/ J(Fo(0)) fo(v)dv

for any closed-form score functioh

On the one hand, the integrands associated with WilcoxorCanathy scores are sufficiently
well-behaved (at least, whenis “not too close to one”, i.ela — 1| > 0.05) for straightforward
numerical evaluation. The corresponding computation fgulace scoregd, is even easier, since
one can show that, in that case,

T (I 0) = 2V2f0 5(F, 5(0)).

On the other hand, computations for van der Waerden scoeemare delicate due to the
oscillating nature of the integrands. A computational rdyn® this numerical instability con-
sists in restricting the domain of integration to a finiteeival in order for numerical integration
algorithms to converge. Our numerical experience indgctiat, setting

f( ) = fe( )1 {fo(2)>10-8}

suffices for stabilizing the integral, whereas the loss firemli by this modification intgfy of fg
appears to be negligible.

The cross-correlation quantities for AREs for general Istaloores are more complicated to
derive for stable scores with general skewness and taihpetea. Indeed, computing

1
T(6:,85) — /0 0, (™ () o, (Fy ()

requires integrating the quantile function of a stableritistion. Despite the rather surprisingly
robust character of the integrals in (iv), numerical ini@rss the only way to obtain the corre-
sponding quantile functions; our numerical evaluationthefcorresponding AREs therefore rely
on the integral approximations

P00 - S (5t () oo (5 () o0

Takingn > 10* in (6.4) yields an absolute error which is less thi@T3.

The programs performing those evaluations have been wiittilathematica 5, and are avail-
able at the url: http://homepages.ulb.ac.be/vswan/ These programs make use of Mathemat-
ica’s powerful numerical evaluation abilities to compute different integrals reliably, although
some of the computations are rather time-consuming. Foe mbvanced results on computational
issues with stable densities, tails and quantiles, we tefRimmer and Nolan (2005).
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