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Abstract

Despite growing interest and practical use in various scientific areas, variable
importances derived from tree-based ensemble methods are not well understood
from a theoretical point of view. In this work we characterize the Mean Decrease
Impurity (MDI) variable importances as measured by an ensemble of totally randomized
trees in asymptotic sample and ensemble size conditions. We derive a three-level
decomposition of the information jointly provided by all input variables about
the output in terms of

i) the MDI importance of each input variable,

ii) the degree of interaction of an input variable with the other input variables,

iii) the different interaction terms of a given degree.

We then show that this MDI importance of a variable is equal to zero if and only if the
variable is irrelevant and that the MDI importance of a relevant variable is invariant with
respect to the removal or the addition of irrelevant variables. We illustrate these properties
on a simple example and discuss how they may change in the case of non-totally
randomized trees such as Random Forests and Extra-Trees.

Variable importances in trees

Notations. Let assume a set V = {X1, ...,Xp} of categorical input variables and a
categorical output variable Y . Given a training sample L of N joint observations of
X1, ...,Xp,Y drawn from P(X1, ...,Xp,Y ), let us define for any internal node t of a
decision tree built from L :

- The number of training samples in t as Nt ;

- The proportion of training samples in t as p(t) = Nt

N ;

- The impurity of node t as i(t) = H(Y |t) (i.e., the Shannon entropy) ;

- The impurity decrease at node t as ∆i(t) = i(t)− NtL

Nt
i(tL)− NtR

Nt
i(tR).
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Definition. In an ensemble of decision trees, the Mean Decrease Impurity (MDI)
importance of an input variable Xm is the sum of the weighted impurity decreases
p(t)∆i(t), for all nodes t where Xm is used, averaged over all NT trees in the ensemble :

Imp(Xm) =
1

NT

∑
T

∑
t∈T :v(t)=Xm

p(t)∆i(t) (1)

where v(t) is the variable used to split node t.

Definition. A fully developed totally randomized tree is a decision tree in which each
node t is partitioned using a variable Xi picked uniformly at random (among those not yet
used at the parent nodes) into |Xi | sub-trees (i.e., one for each possible value of Xi) and
where the recursive construction halts when all p variables have been used along the
current branch.

Theoretical results

3 Thm. 1 and 2 : Variable importances provide a three-level decomposition of the
information jointly provided by all the input variables about the output,
accounting for all interaction terms in a fair and exhaustive way.
3 Thm. 3 and 5 : Variable importances depend only on the relevant variables.

Theorem 1. The MDI importance of Xm ∈ V for Y as computed with an infinite
ensemble of fully developed totally randomized trees and an infinitely large training set is :

Imp(Xm) =

p−1∑
k=0

1

C k
p

1

p − k︸ ︷︷ ︸
ii) Decomposition along

the degrees k of interaction
with the other variables

∑
B∈Pk(V−m)

I (Xm; Y |B)︸ ︷︷ ︸
iii) Decomposition along all

interaction terms B
of a given degree k

, (2)

where V−m denotes the subset V \ {Xm}, Pk(V−m) is the set of subsets of V−m of
cardinality k, and I (Xm; Y |B) is the conditional mutual information of Xm and Y given
the variables in B.

Proof. (sketch)
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p
is the probability of the branch B = {Xi1,Xi2} (in light blue)

1

p−k
is the probability of drawing Xm (in blue) given B

(i) Using the Shannon entropy, ∆i(t) = I (Xm; Y |t) ;
(ii) As N →∞, p(t)→ p(B = b) and I (Xm; Y |t)→ I (Xm; Y |B = b), where B is the
subset of k variables in the branch leading to t and b the vector of values of these
variables ;
(iii) As NT →∞, branches B = b of size k all appear with equal probability 1

C k
p

and Xm is

tested at the end of 1
p−k of them.

⇒ Equation (1) transforms into Equation (2). �

Theorem 2. For any ensemble of fully developed trees in asymptotic learning sample size
conditions, we have that

p∑
m=1

Imp(Xm)︸ ︷︷ ︸
i) Decomposition in terms of

the MDI importance of
each input variable

= I (X1, . . . ,Xp; Y )︸ ︷︷ ︸
Information jointly provided

by all input variables
about the output

(3)

Theorem 3. Xi ∈ V is irrelevant to Y with respect to V if and only if its infinite sample
size importance as computed with an infinite ensemble of fully developed totally
randomized trees built on V for Y is 0.

Theorem 5. Let VR ⊆ V be the subset of all variables in V that are relevant to Y with
respect to V . The infinite sample size importance of any variable Xm ∈ VR as computed
with an infinite ensemble of fully developed totally randomized trees built on VR for Y is
the same as its importance computed in the same conditions by using all variables in V .

Illustration
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Task. Let us consider a 7-segment indicator displaying numerals using lights
in on-off combinations. Let Y be a random variable taking its value in
{0, 1, ..., 9} and let X1, ...,X7 be binary variables corresponding to the light
segments. We illustrate variable importances as computed with totally ran-
domized trees built from training samples drawn from P(X1, ...,X7,Y ).

Effect of randomization. Let K (aka. mtry or max features) be the number of
variables drawn to maximize ∆i . Variable importances at K = 1 follow theoretical values
of Theorem 1. However, as K increases, importances diverge due to masking effects. In
accordance with Theorem 2, their sum is also always equal to
I (X1, . . . ,X7; Y ) = H(Y ) = log2(10) = 3.321 since inputs allow to perfectly predict the
output.

Thm.1 K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7
X1 0.412 0.414 0.362 0.327 0.309 0.304 0.305 0.306
X2 0.581 0.583 0.663 0.715 0.757 0.787 0.801 0.799
X3 0.531 0.532 0.512 0.496 0.489 0.483 0.475 0.475
X4 0.542 0.543 0.525 0.484 0.445 0.414 0.409 0.412
X5 0.656 0.658 0.731 0.778 0.810 0.827 0.831 0.835
X6 0.225 0.221 0.140 0.126 0.122 0.122 0.121 0.120
X7 0.372 0.368 0.385 0.392 0.387 0.382 0.375 0.372∑

3.321 3.321 3.321 3.321 3.321 3.321 3.321 3.321︸ ︷︷ ︸
=

Decomposition. Variable importances decompose along the degrees k of interactions of
one variable with the other ones. At K = 1 (left), all I (Xm; Y |B) are accounted for in the
total importance, while at K = 7 (right) only some of them are taken into account due to
masking effects.
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7 Because of masking effects due to the non-totally random choices of split variables,
Theorems 1, 3 and 5 do not apply for Random Forests and variants. Increasing K
makes importance scores diverge from a fair and exhaustive exploration of all interaction
terms.

Conclusions

3 First step towards understanding variable importances, as computed with a forest of
totally randomized trees.
3 Variable importances offer a three-level decomposition of the information provided by
the inputs about the output.
3 MDI importances exhibit desirable properties for assessing the relevance of a variable :

- it accounts for all interaction terms, in a fair and exhaustive way ;

- it is null if and only if the variable is irrelevant ;

- it depends only on the relevant variables ;

� Fully formalize variable importances of actual Random Forests and variants.
� Characterize the distribution of variable importances in a finite setting.
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